TY - JOUR AU - Srivijai B, AU - Jegan A, AU - Iniyaraja B, AU - Babu M, PY - 2018/09/01 Y2 - 2024/03/29 TI - REVIEW AND EXPERIMENTAL ON COMBINATION OF FE- PCL3 NANOPARTICLES BY MACHNOCHEMICAL DISPENSATION WITH BALL MILLING JF - Journal of Manufacturing Engineering JA - JME VL - 13 IS - 3 SE - Articles DO - UR - http://smenec.org/index.php/1/article/view/128 SP - 158-164 AB - <p>This paper reveals information on research of PCl<sub>3</sub> nanoparticles by milling using a planetary ball mill, taking the mixture of two different sizes of balls. The milled powder is characterized using X-ray diffraction (XRD) and particles size analyzer. Samples have taken at 0, 18, 24, 30 and 40 hours after milling the powder. The crystal sizes of milled powder for different milling times are characterized. By increasing the milling time crystal size decreases. After 40 hours average crystal size of milled powder is 21nm. But controlling the size and preparation in bulk of nanoparticles eco- friendly is interesting. This paper reports on preparation of PCl<sub>3</sub> nanoparticles by wet milling using a planetary ball mill, taking the combination of two different sizes of balls. The milled powder is characterized using X-ray diffraction (XRD) and particles size analyzer. Samples have taken at 18, 24, 36 and 50 hours after milling the powder. The crystal sizes of milled powder for different milling times are characterized. By increasing the milling time crystal size decreases. After 50 hours average crystal size of milled powder is 15nm.</p><p>There are a lot of parameters used in ball milling process. However, the parameters that have been tested most for optimization are the rotation speed and milling time. This indicates that these two parameters play an important role in determining the effectiveness of the milling. As supported by Samos, ball to powder weight ratio is recognized as one of the most influential parameters, alongside milling time and rotation speed. Zhang et al. believed that the volume of milling medium is the most influential parameter, followed by the rotation speed. The ball to powder weight ratio used by previous works clearly varies from one another. Although majority of the ratios used were in the range of 10: 1 to 20: 1, there are works that have used ratio much higher than that, going up to 100: 1 [4]. Higher ball to powder Weight ratio helps increase the particle size reduction rate. However, when the ratio used is too high, there is a possibility that contamination resulting from the collision of grinding balls and inner wall of milling vial will happen</p> ER -