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ABSTRACT 
 The Particle swarm optimization (PSO) is one of the evolutionary computation techniques 
that can be applied to a wide range of real world problems. In this paper, PSO algorithm is 
numerically illustrated with a one dimensional unconstrained problem. The efficiency and robustness 
of this algorithm is demonstrated by applying it to the benchmark functions namely Goldstein- Price 
and De jong functions and the results were compared with those obtained using other optimization 
algorithms.Matlab code is created and used to solve the benchmark functions. 
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1. Introduction 
Particle swarm optimization (PSO) is a 

population based self-adaptive search optimization 
technique that was proposed by Eberhart and Kennedy 
in 1995, where the population is referred to as a swarm 
[1]. The PSO is based on simulations of social behaviors 
such as fish in a school, birds in a flock, etc. A swarm in 
PSO consists of a number of particles. Each particle 
represents a potential solution of the optimization task. 
All of the particles iteratively discover a probable 
solution. Each particle moves to a new position 
according to the new velocity and the previous positions 
of the particle. The PSO has ability of fast convergence 
to local and/or global optimal solutions over a small 
number of generations. [1, 3]  

The advantage of PSO approach over 
traditional techniques is its robustness and flexibility in 
solving real-world problems featuring non-
differentiability, high dimension, multiple optima and 
non-linearity. These properties make swarm intelligence 
a successful design paradigm for algorithms that deal 
with increasingly complex problems [2]. 

It has been reported [4, 5, 6] that the PSO 
technique is superior in comparison with other 
evolutionary computation techniques such as genetic 
algorithm (GA), simulated annealing algorithm (SA), 
Tabu search algorithm (TS), memetic algorithm (MA) 
and ants colony algorithm (ACO). PSO has found 
applications in a lot of areas such as constrained 
optimization problems, Min-max problems, Multi- 

 
 
 
 

 
 

objective optimization problems and Dynamic tracking. 
It has also been applied to evolve weights and structure 
of neural networks, analyze human tremor, register 3D-
to-3D biomedical image, play games, control reactive 
power and voltage, etc. Generally speaking, PSO can be 
applied to solve most optimization problems and 
problems that can be converted to optimization 
problems [7]. 

2. Particle Swarm Optimization Algorithm 
 The PSO algorithm is simple in concept, easy 

to implement and computationally efficient. The 
original algorithm for implementing PSO is as follows 
[7]  

i. Initialize a population of particles with random 
positions and velocities on D dimensions in the 
problem space. 

ii. For each particle, evaluate the desired 
optimization fitness function in D variables. 

iii. Compare particle's fitness evaluation with its 
pbest. If current value is better than pbest, then 
set pbest equal to the current value, and Pi equals 
to the current location Xi in                   D-
dimensional space. 

iv. Identify the particle in the neighborhood with the 
best success so far, and assign its index to the 
variable gbest. 

v. Update the velocity and position of the particle 
according to the following Equations [8]  
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       Vi+1 = w Vi + c1r1 (pbesti – Xi) + c2r2 (gbesti – Xi)         (1) 
        X i+1 = Xi + Vi+1    (2) 
 

vi. Loop to step (ii) until a criterion is met, usually 
a sufficiently good fitness or a maximum 
number of iterations. 

2.1 Description of the velocity and position 
update equations  

Equation (1) calculates a new velocity (Vi+1) 
for each particle (potential solution) based on its 
previous velocity, the best location it has achieved 
(pbest) so far, and the global best location (gbest), the 
population has achieved. Equation (2) updates 
individual particle’s position (Xi) in the solution 
hyperspace. The two random numbers r1 and r2 in Eq. 
(1) are independently generated in the range [0,1]. The 
acceleration constants c1 and c2 in equation (1) represent 
the weighting of the stochastic acceleration terms that 
pull each particle towards pbest and gbest positions. c1 
represents the confidence the particle has in itself 
(cognitive parameter) and c2 represents the confidence 
the particle has in swarm (social parameter). Thus, 
adjustment of these constants changes the amount of 
tension in the system. The inertia weight w plays an 
important role in the PSO convergence behavior since it 
is employed to control the exploration abilities of the 
swarm.  

 

 

Fig.1 A general flow chart of PSO algorithm [6] 

To achieve the dimensional consistency of 
Equations (1) and (2), the dimension of the term cr in 
equation (1) could be taken as (time)-2. This way, the 
second and the third terms in equation (1) assume the 

dimension of acceleration. To get the correct dimension 
of velocity, as required by the left hand side, one needs 
to multiply them by ∆t, the time step, which becomes 
unity in the present case, denoting changes from 
iteration i to i + 1. Similarly, the second term in 
equation (2) assumes the correct dimension when taken 
as Vi+1 ∆t. However, the present form results through the 
implicit assumption that ∆t equals 1. [4] In short, the 
whole concept of PSO can be stated as  “A population 
consisting N particles, each particles has D variables 
(dimension) which have their own ranges for each 
value, velocities and positions are updated every 
iteration until maximum iteration is reached”. Figure 1 
describes the scenario mentioned above. 

3. PSO Parameter Control 
In PSO [1, 5], the following are the parameters 

that need to be tuned. Here is a list of the parameters 
and their typical values: 

a) The number of particles or swarm size 
The optimum swarm size is problem 

dependent. However the typical range is 10 – 30. In 
general, 10 particles are large enough to get good 
results. In some special cases, 100 or 200 particles are 
employed to get optimum solution. 

b) Dimension of particles 
Particles dimension is determined by the 

problem to be optimized. 
Example: 
1. Minimize f(x) = 9x3 - 2x2 – 6x + 21    
       - One Dimensional Problem  
2. Max f(x) = 12x1

3 + x2
2 – 32x1x2-1245 –  

        - Two Dimensional Problem 
In the above two examples, f(x) is the fitness 

function and the number of variables associated with the 
fitness function is known as dimension of the particles.  

c) Range of particles 
This is also determined by the problem to be 

optimized. 

d) Acceleration coefficients or Learning factors 
c1 and c2 are usually equal to 2. However, other 

settings are also used in different papers. But usually c1 
equals to c2 and ranges from [0, 4] 

e) The stop condition 
The maximum number of iterations the PSO 

executes. This stop condition depends on the problem to 
be optimized. 
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f) Inertia weight 
An important aspect that determines the 

efficiency and accuracy of an optimization algorithm is 
the exploration–exploitation trade-off. Exploration is the 
ability of a search algorithm to explore different regions 
of the search space in order to locate a good optimum. 
Exploitation, on the other hand, is the ability to 
concentrate the search around a promising area in order 
to refine a candidate solution. A good optimization 
algorithm optimally balances these contradictory 
objectives. Within the PSO, these objectives are 
addressed by the velocity update equation.  

The value of w is extremely important to 
ensure convergent behavior, and to optimally trade-off 
exploration and exploitation. Usually w varies from 0.9 
to 0.4. To obtain guaranteed convergence for simple 
PSO [1] the condition shown below should be satisfied. 
 
1 > w > ½ (c1 + c2 ) – 1 ≥ 0                             (3) 
Generally, w is taken as 0.5 

4.Computational Implementation of 
PSO  

The implementation of PSO is illustrated with the 
following one dimensional problem. 
Minimize f = x2-8x;    -10 ≤ x ≤ 10                (4) 
Step 1: Create a population of N particles and calculate 
its fitness 

The number of particles is chosen as three and 
all three particles initialized randomly within (-10, 10). 
The initial velocity for all the particles is assumed as 
zero. Then the fitness is evaluated using equation (4). 

Table 1. First iteration 
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gbest is in bold letters, c1 = c2=2 and w = 0.5 
 

Step 2: Finding the gbest and pbest 
The fitness values of above three particles are 

compared and the particle whose fitness value is the 

lowest (since it is minimization problem) is selected. 
The position of the lowest fitness particle in the solution 
space is known as gbest value. In table 1, particle 1 has 
the lowest fitness value and its position in the solution 
space is 7. Therefore gbest value for this initial or first 
iteration is 7(shaded in yellow color).Initially, the pbest 
values for all the particles will be the same as the 
current X values. In case of maximization problem, the 
position of the particle whose fitness value is highest 
will be taken as gbest. 

 
Step3: Update velocity and position of the particles 
using equation 1 and 2 

The position and velocity of the particles are 
updated and tabulated in table-1. The detailed 
computation is illustrated below. 
 
Updated V for particle 1 = V1  =  
0.5*0 + {2*0.4868*(7-7)} + {2*0.3063*(7-7)} = 0 
Updated V for particle2 = V1  =  
0.5*0+{2*0.4359*(-2-(-2)}+{2*0.5085*(7-(-2))}= 
9.153 
Updated V for particle 3 = V1  =  
0.5*0+{2*0.4468*(9-9)} + {2*0.5108*(7-9)} = -2.0432 

Table 2. Second and third iteration 
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Gbest
fitness corresponds to Gbest

New X for Particle 1 = X1 = add column X and updated 
V column in table.1= 7 + 0 = 7 
New X for Particle 2 = X1 = -2 + 9.153 = 7.1530 
New X for Particle 3 = X1 = 9 + (-2.0432) = 6.9568              
Similar to the first iteration, iteration 2 and 3 are 
computed and presented in table 2  

 
Finding pbest for iteration number: 3, for particle-1: 

 
The fitness values of particle 1 during iteration 

1, 2 & 3 are compared and the lowest fitness value is 
selected. The position (X value) which corresponds to 
the lowest fitness value is pbest value for particle 1. 
Similar manner pbest values were computed for particle 
2 and 3 and presented in table-3. 

Table 3. pbest values of particles 
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Bold letters represents pbest value for iteration no:3 
 

Step: 4 if number of iterations reaches maximum 
iteration (100), then end. 
   The present gbest value will give the optimized 
value. 

5. PSO Simulation Results  
The coding for PSO is done with Matlab 7.6 

software for minimization of a one dimensional function 
and a two dimensional function (Goldstein- Price 
function). It is also applied to a two dimensional 
maximization function (De jong function) and the 
simulated results were presented and discussed below. 

5.1 One Dimensional function 
The matlab coding is created based on PSO concept to 
minimize f = x2-8x;   -10 ≤ x ≤ 10. 
The parameters considered to solve this function are 
listed below. 
Number of particles or swarm size = 3  
The learning factors c1 = c2 = 2 

Inertia weight w = 0.5   
Termination criteria: Total number of iterations = 50 
 
 
 
 
 
 
 
 
 
 

 

Fig.2. The one dimensional function (equation no:4) 
to be optimized 

 

 

 

 

 

 

Fig.3. Position of all the particles while solving one 
dimensional function (equation 4) 

Fig.2 illustrates the one dimensional function 
in the solution space. The positions of all the particles 
are shown in the fig.3 against its iteration. The gbest 
value and the fitness value corresponding to the gbest 
are shown in fig.4. The particles found the optimum 
solution (minimum value) at the 8th iteration. That 
means the convergence of the solution beginning at 
eighth iteration. The optimal solution and the minimum 
fitness value are x = 4 and fmin = -16 respectively. 
 

 

 

 

 

 

Fig.4 gbest and the fitness value corresponds to gbest 
for one dimensional function 
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5.2 Goldstein- Price function 
The function is minimize F = [1 + (x1 + x2 + 1) 

2 (19 − 14x1 + 3x1
2- 14x2 + 6x1x2 + 3x2

2 )]* [30 + (2x1 − 
3x2) 2(18 − 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2 )] 

 
In the interval:  [−2, 2] 

 

 

 

 
 
 
 

Fig.5 Goldstein- Price function 

 

 

 

 

 

 

 

Fig.6. Position of all particles in 3-Dimensional 
solution space when solving Goldstein- Price 

function 

 

 

 

 

 

 

 

Fig.7. Position of all particles in 2-Dimensional 
solution space - Goldstein- Price function 

The control parameters setting to solve Goldstein- Price 
function are: 
Number of particles or swarm size = 3  

The learning factors c1 = c2 = 1.5 
Inertia weight w = 0.6  
Termination criteria: Total number of iterations = 75 
 
 
 
 
 
 
 
 
 

Fig.8. fitness value corresponding to the gbest value 
for Goldstein- Price function 

The Goldstein- Price function is shown in 
Fig.5. As the iteration proceeds, the positions of the 
particles are changing and converging to the optimal 
solution (position).  The changes of positions of the 
particle are illustrated in Fig.6 and Fig.7. The variation 
of the fitness value corresponding to the gbest is shown 
in Fig.8. From this figure it is known that the particles 
found optimum position at 29th iteration onwards. 
During simulation, it is noted that all three particles 
found the optimum position (solution) at 74th iteration.  
The optimum solution for this function found by PSO 
simulation is X = (0, -0.99999) and the minimum value 
of the function is Fmin = 3. 

5.3 De jong function 
The De jong function is max F = 3905.93 − 

100(x1
2− x2

2) − (1 − x1)2 ; In the interval:  
 [−2.048, 2.048] 

 
 
 
 
 
 
 
 

Fig.9. De jong function 

 

 

 

 

Fig.10. Fitness value corresponding to the gbest 
value for De jong function 
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The PSO parameters selected to solve De jong function 
are listed below: 
Number of particles or swarm size = 3  
The learning factors c1 = c2 = 1.5 
Inertia weight w = 0.6  
Termination criteria: Total number of iterations = 50 

The De jong function is illustrated in Fig.9. 
The variation of the fitness value corresponding to the 
gbest with respect to the iteration number is shown in 
Fig.10. From this figure, it is understood that the 33 
iteration onwards the gbest particles found the optimum 
position (solution).  The global optimum for De jong 
function is computed as X= (0.02958, -2.04744);  Fmax = 
4324.104. 

5.4 Results Comparison 
Table 4. Comparison of results 
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The values within the bracket indicate that the 

iteration number at which PSO starts giving the 
optimum solution. The results obtained from the 
Genetic, Ants and Bees algorithm [10] are compared 
with PSO and the same is presented in table-4. The PSO 
gives global optimum solution for Goldstein price 
function with less number of iterations compared to GA, 
Ants and Bees algorithm. The second test function was 
De Jong’s, for which the PSO Algorithm found better 
global optimum solution as compared to other 
algorithms with minimum number of iterations. Hence, 

it is concluded that the PSO performs better than other 
algorithms as tabulated in table-4. 

6. Conclusion 
This paper has presented the computational 

implementation of PSO with a numerical illustration. 
Simulation results on Goldstein price and De jong 
functions show that the proposed algorithm has 
remarkable robustness, producing a 100% success rate. 
The algorithm converged to the maximum or minimum 
without becoming trapped at local optima. The PSO 
algorithm generally outperformed other techniques that 
were compared with it in terms of speed of optimization 
and accuracy of the results obtained. Future research 
will focus on the study of the variations in PSO 
algorithm such as PSO algorithm with multiple 
swarms, Hybrid algorithms, Multi-start methods etc,. 
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