
Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 4, pp 223-228

www.smenec.org © SME

223

*Corresponding Author - E- mail: selvakumaratju@gmail.com

 AN EFFICIENT ALGORITHM FOR NUMERICAL FUNCTION
OPTIMIZATION: PARTICLE SWARM OPTIMIZATION

*Selva Kumar G and Selvaraj M

Department of Mechanical Engineering, SSN College of Engineering, Chennai – 603 110, Tamil Nadu, India

ABSTRACT
 The Particle swarm optimization (PSO) is one of the evolutionary computation techniques
that can be applied to a wide range of real world problems. In this paper, PSO algorithm is
numerically illustrated with a one dimensional unconstrained problem. The efficiency and robustness
of this algorithm is demonstrated by applying it to the benchmark functions namely Goldstein- Price
and De jong functions and the results were compared with those obtained using other optimization
algorithms.Matlab code is created and used to solve the benchmark functions.

Keywords: Particle swarm optimization (PSO), Function optimization, Goldstein- Price and
 De jong function

1. Introduction
Particle swarm optimization (PSO) is a

population based self-adaptive search optimization
technique that was proposed by Eberhart and Kennedy
in 1995, where the population is referred to as a swarm
[1]. The PSO is based on simulations of social behaviors
such as fish in a school, birds in a flock, etc. A swarm in
PSO consists of a number of particles. Each particle
represents a potential solution of the optimization task.
All of the particles iteratively discover a probable
solution. Each particle moves to a new position
according to the new velocity and the previous positions
of the particle. The PSO has ability of fast convergence
to local and/or global optimal solutions over a small
number of generations. [1, 3]

The advantage of PSO approach over
traditional techniques is its robustness and flexibility in
solving real-world problems featuring non-
differentiability, high dimension, multiple optima and
non-linearity. These properties make swarm intelligence
a successful design paradigm for algorithms that deal
with increasingly complex problems [2].

It has been reported [4, 5, 6] that the PSO
technique is superior in comparison with other
evolutionary computation techniques such as genetic
algorithm (GA), simulated annealing algorithm (SA),
Tabu search algorithm (TS), memetic algorithm (MA)
and ants colony algorithm (ACO). PSO has found
applications in a lot of areas such as constrained
optimization problems, Min-max problems, Multi-

objective optimization problems and Dynamic tracking.
It has also been applied to evolve weights and structure
of neural networks, analyze human tremor, register 3D-
to-3D biomedical image, play games, control reactive
power and voltage, etc. Generally speaking, PSO can be
applied to solve most optimization problems and
problems that can be converted to optimization
problems [7].

2. Particle Swarm Optimization Algorithm
 The PSO algorithm is simple in concept, easy

to implement and computationally efficient. The
original algorithm for implementing PSO is as follows
[7]

i. Initialize a population of particles with random
positions and velocities on D dimensions in the
problem space.

ii. For each particle, evaluate the desired
optimization fitness function in D variables.

iii. Compare particle's fitness evaluation with its
pbest. If current value is better than pbest, then
set pbest equal to the current value, and Pi equals
to the current location Xi in D-
dimensional space.

iv. Identify the particle in the neighborhood with the
best success so far, and assign its index to the
variable gbest.

v. Update the velocity and position of the particle
according to the following Equations [8]

http://www.smenec.org
mailto:selvakumaratju@gmail.com

Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 4, pp 223-228

www.smenec.org © SME

224

 Vi+1 = w Vi + c1r1 (pbesti – Xi) + c2r2 (gbesti – Xi) (1)
 X i+1 = Xi + Vi+1 (2)

vi. Loop to step (ii) until a criterion is met, usually
a sufficiently good fitness or a maximum
number of iterations.

2.1 Description of the velocity and position
update equations

Equation (1) calculates a new velocity (Vi+1)
for each particle (potential solution) based on its
previous velocity, the best location it has achieved
(pbest) so far, and the global best location (gbest), the
population has achieved. Equation (2) updates
individual particle’s position (Xi) in the solution
hyperspace. The two random numbers r1 and r2 in Eq.
(1) are independently generated in the range [0,1]. The
acceleration constants c1 and c2 in equation (1) represent
the weighting of the stochastic acceleration terms that
pull each particle towards pbest and gbest positions. c1
represents the confidence the particle has in itself
(cognitive parameter) and c2 represents the confidence
the particle has in swarm (social parameter). Thus,
adjustment of these constants changes the amount of
tension in the system. The inertia weight w plays an
important role in the PSO convergence behavior since it
is employed to control the exploration abilities of the
swarm.

Fig.1 A general flow chart of PSO algorithm [6]

To achieve the dimensional consistency of
Equations (1) and (2), the dimension of the term cr in
equation (1) could be taken as (time)-2. This way, the
second and the third terms in equation (1) assume the

dimension of acceleration. To get the correct dimension
of velocity, as required by the left hand side, one needs
to multiply them by ∆t, the time step, which becomes
unity in the present case, denoting changes from
iteration i to i + 1. Similarly, the second term in
equation (2) assumes the correct dimension when taken
as Vi+1 ∆t. However, the present form results through the
implicit assumption that ∆t equals 1. [4] In short, the
whole concept of PSO can be stated as “A population
consisting N particles, each particles has D variables
(dimension) which have their own ranges for each
value, velocities and positions are updated every
iteration until maximum iteration is reached”. Figure 1
describes the scenario mentioned above.

3. PSO Parameter Control
In PSO [1, 5], the following are the parameters

that need to be tuned. Here is a list of the parameters
and their typical values:

a) The number of particles or swarm size
The optimum swarm size is problem

dependent. However the typical range is 10 – 30. In
general, 10 particles are large enough to get good
results. In some special cases, 100 or 200 particles are
employed to get optimum solution.

b) Dimension of particles
Particles dimension is determined by the

problem to be optimized.
Example:
1. Minimize f(x) = 9x3 - 2x2 – 6x + 21
 - One Dimensional Problem
2. Max f(x) = 12x1

3 + x2
2 – 32x1x2-1245 –

 - Two Dimensional Problem
In the above two examples, f(x) is the fitness

function and the number of variables associated with the
fitness function is known as dimension of the particles.

c) Range of particles
This is also determined by the problem to be

optimized.

d) Acceleration coefficients or Learning factors
c1 and c2 are usually equal to 2. However, other

settings are also used in different papers. But usually c1
equals to c2 and ranges from [0, 4]

e) The stop condition
The maximum number of iterations the PSO

executes. This stop condition depends on the problem to
be optimized.

http://www.smenec.org

Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 4, pp 223-228

www.smenec.org © SME

225

f) Inertia weight
An important aspect that determines the

efficiency and accuracy of an optimization algorithm is
the exploration–exploitation trade-off. Exploration is the
ability of a search algorithm to explore different regions
of the search space in order to locate a good optimum.
Exploitation, on the other hand, is the ability to
concentrate the search around a promising area in order
to refine a candidate solution. A good optimization
algorithm optimally balances these contradictory
objectives. Within the PSO, these objectives are
addressed by the velocity update equation.

The value of w is extremely important to
ensure convergent behavior, and to optimally trade-off
exploration and exploitation. Usually w varies from 0.9
to 0.4. To obtain guaranteed convergence for simple
PSO [1] the condition shown below should be satisfied.

1 > w > ½ (c1 + c2) – 1 ≥ 0 (3)
Generally, w is taken as 0.5

4.Computational Implementation of
PSO

The implementation of PSO is illustrated with the
following one dimensional problem.
Minimize f = x2-8x; -10 ≤ x ≤ 10 (4)
Step 1: Create a population of N particles and calculate
its fitness

The number of particles is chosen as three and
all three particles initialized randomly within (-10, 10).
The initial velocity for all the particles is assumed as
zero. Then the fitness is evaluated using equation (4).

Table 1. First iteration

It
er

at
io

n

no
.

Pa
rt

ic
le

no

.

X V

fit
ne

ss

pb
es

t

r1 r2

U
pd

at
ed

 V

ne
w

 X

1

1

7.
00

00

0.
00

00

-7
.0

00
0

7.
00

00

0.
48

68

0.
30

63

0.
00

00

7.
00

00

2

-2
.0

00
0

0.
00

00

20
.0

00
0

-2
.0

00
0

0.
43

59

0.
50

85

9.
15

30

7.
15

30

3

9.
00

00

0.
00

00

9.
00

00

9.
00

00

0.
44

68

0.
51

08

-2
.0

43
2

6.
95

68

gbest is in bold letters, c1 = c2=2 and w = 0.5

Step 2: Finding the gbest and pbest
The fitness values of above three particles are

compared and the particle whose fitness value is the

lowest (since it is minimization problem) is selected.
The position of the lowest fitness particle in the solution
space is known as gbest value. In table 1, particle 1 has
the lowest fitness value and its position in the solution
space is 7. Therefore gbest value for this initial or first
iteration is 7(shaded in yellow color).Initially, the pbest
values for all the particles will be the same as the
current X values. In case of maximization problem, the
position of the particle whose fitness value is highest
will be taken as gbest.

Step3: Update velocity and position of the particles
using equation 1 and 2

The position and velocity of the particles are
updated and tabulated in table-1. The detailed
computation is illustrated below.

Updated V for particle 1 = V1 =
0.5*0 + {2*0.4868*(7-7)} + {2*0.3063*(7-7)} = 0
Updated V for particle2 = V1 =
0.5*0+{2*0.4359*(-2-(-2)}+{2*0.5085*(7-(-2))}=
9.153
Updated V for particle 3 = V1 =
0.5*0+{2*0.4468*(9-9)} + {2*0.5108*(7-9)} = -2.0432

Table 2. Second and third iteration

It
er

at
io

n
 n

o

Pa
rt

ic
le

. n
o

X V

fit
ne

ss

pb
es

t

r1 r2
U

pd
at

ed
 V

ne
w

 X

2

1

7.
00

00

0.
00

00

-7
.0

00
0

7.
00

00

0.
81

76

0.
37

86

-0
.0

32
7

6.
96

73

2

7.
15

30

9.
15

30

-6
.0

58
6

7.
15

30

0.
79

48

0.
81

16

4.
25

80

11
.4

11
0

3

6.
95

68

-2
.0

43
2

-7
.2

57
3

6.
95

68

0.
64

43

0.
52

38

-1
.0

21
6

5.
93

52

3

1

6.
96

73

-0
.0

32
7

-7
.1

95
2

6.
96

73

0.
35

07

0.
55

02

-1
.1

52
1

5.
81

52

2

11
.4

11
0

4.
25

80

38
.9

23
3

7.
15

30

0.
93

90

0.
62

25

-1
2.

68
5

-1
.2

73
9

3

5.
93

52

-1
.0

21
6

-1
2.

25
5

5.
93

52

0.
87

59

0.
58

70

-0
.5

10
8

5.
42

44

gbest is in bold letters, c1 = c2=2 and w = 0.5

http://www.smenec.org

Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 4, pp 223-228

www.smenec.org © SME

226

-10 -5 0 5 10
-20

0

20

40

60

80

100

120

140

160

180

x

f =
 x

.2 - 8
x

0 10 20 30 40 50
-2

0

2

4

6

8

10

12

iteration number

pa
rti

cl
es

 p
os

iti
on

Particle-1
Particle-2
Particle-3

0 10 20 30 40 50
-20

-15

-10

-5

0

5

10

iteration number

fit
ne

ss
 v

al
ue

 c
or

re
sp

on
ds

 to
 G

be
st

 &
 G

be
st

Gbest
fitness corresponds to Gbest

New X for Particle 1 = X1 = add column X and updated
V column in table.1= 7 + 0 = 7
New X for Particle 2 = X1 = -2 + 9.153 = 7.1530
New X for Particle 3 = X1 = 9 + (-2.0432) = 6.9568
Similar to the first iteration, iteration 2 and 3 are
computed and presented in table 2

Finding pbest for iteration number: 3, for particle-1:

The fitness values of particle 1 during iteration

1, 2 & 3 are compared and the lowest fitness value is
selected. The position (X value) which corresponds to
the lowest fitness value is pbest value for particle 1.
Similar manner pbest values were computed for particle
2 and 3 and presented in table-3.

Table 3. pbest values of particles

Ite
ra

tio
n

no
 Particle1 Particle2 Particle3

fit
ne

ss

X

fit
ne

ss

X

fit
ne

ss

X

1 -7

7 20

-2

9 9

2 -7

7

-6
.0

58
6

7.
15

30

-7
.2

57
3

6.
95

68

3

-7
.1

95
2

6.
96

73

38
.9

23
3

11
.4

11
0

-1
2.

25
5

5.
93

52

Bold letters represents pbest value for iteration no:3

Step: 4 if number of iterations reaches maximum
iteration (100), then end.
 The present gbest value will give the optimized
value.

5. PSO Simulation Results
The coding for PSO is done with Matlab 7.6

software for minimization of a one dimensional function
and a two dimensional function (Goldstein- Price
function). It is also applied to a two dimensional
maximization function (De jong function) and the
simulated results were presented and discussed below.

5.1 One Dimensional function
The matlab coding is created based on PSO concept to
minimize f = x2-8x; -10 ≤ x ≤ 10.
The parameters considered to solve this function are
listed below.
Number of particles or swarm size = 3
The learning factors c1 = c2 = 2

Inertia weight w = 0.5
Termination criteria: Total number of iterations = 50

Fig.2. The one dimensional function (equation no:4)
to be optimized

Fig.3. Position of all the particles while solving one
dimensional function (equation 4)

Fig.2 illustrates the one dimensional function
in the solution space. The positions of all the particles
are shown in the fig.3 against its iteration. The gbest
value and the fitness value corresponding to the gbest
are shown in fig.4. The particles found the optimum
solution (minimum value) at the 8th iteration. That
means the convergence of the solution beginning at
eighth iteration. The optimal solution and the minimum
fitness value are x = 4 and fmin = -16 respectively.

Fig.4 gbest and the fitness value corresponds to gbest
for one dimensional function

http://www.smenec.org

Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 4, pp 223-228

www.smenec.org © SME

227

-2
-1

0
1

2

-2
-1

0
1

2
0

5

10

15

x 105

x1x2

F

-3
-2

-1
0

1
2

-4

-2

0

2
3400

3600

3800

4000

4200

4400

x1x2

F

-2

0

2

4

-4

-2

0

2
0

5

10

15

x 104

x1x2

Fi
tn

es
s

va
lu

e

Particle-1
Particle-2
Particle-3

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x2

 Particle-1
 Particle-2
 Particle-3

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900

iteration number

fit
ne

ss
 v

al
ue

 c
or

re
sp

on
ds

 to
 g

be
st

0 5 10 15 20 25 30 35 40 45 50
3900

4000

4100

4200

4300

4400

iteration number

fit
ne

ss
 v

al
ue

 c
or

re
sp

on
ds

 to
 g

be
st

5.2 Goldstein- Price function
The function is minimize F = [1 + (x1 + x2 + 1)

2 (19 − 14x1 + 3x1
2- 14x2 + 6x1x2 + 3x2

2)]* [30 + (2x1 −
3x2) 2(18 − 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2)]

In the interval: [−2, 2]

Fig.5 Goldstein- Price function

Fig.6. Position of all particles in 3-Dimensional
solution space when solving Goldstein- Price

function

Fig.7. Position of all particles in 2-Dimensional
solution space - Goldstein- Price function

The control parameters setting to solve Goldstein- Price
function are:
Number of particles or swarm size = 3

The learning factors c1 = c2 = 1.5
Inertia weight w = 0.6
Termination criteria: Total number of iterations = 75

Fig.8. fitness value corresponding to the gbest value
for Goldstein- Price function

The Goldstein- Price function is shown in
Fig.5. As the iteration proceeds, the positions of the
particles are changing and converging to the optimal
solution (position). The changes of positions of the
particle are illustrated in Fig.6 and Fig.7. The variation
of the fitness value corresponding to the gbest is shown
in Fig.8. From this figure it is known that the particles
found optimum position at 29th iteration onwards.
During simulation, it is noted that all three particles
found the optimum position (solution) at 74th iteration.
The optimum solution for this function found by PSO
simulation is X = (0, -0.99999) and the minimum value
of the function is Fmin = 3.

5.3 De jong function
The De jong function is max F = 3905.93 −

100(x1
2− x2

2) − (1 − x1)2 ; In the interval:
 [−2.048, 2.048]

Fig.9. De jong function

Fig.10. Fitness value corresponding to the gbest
value for De jong function

http://www.smenec.org

Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 4, pp 223-228

www.smenec.org © SME

228

The PSO parameters selected to solve De jong function
are listed below:
Number of particles or swarm size = 3
The learning factors c1 = c2 = 1.5
Inertia weight w = 0.6
Termination criteria: Total number of iterations = 50

The De jong function is illustrated in Fig.9.
The variation of the fitness value corresponding to the
gbest with respect to the iteration number is shown in
Fig.10. From this figure, it is understood that the 33
iteration onwards the gbest particles found the optimum
position (solution). The global optimum for De jong
function is computed as X= (0.02958, -2.04744); Fmax =
4324.104.

5.4 Results Comparison
Table 4. Comparison of results

Fu
nc

tio
n

G
A

A
N

T
S

B
ee

s
A

lg
or

ith
m

G
lo

ba
l o

pt
im

um
 b

y

G
A

, A
N

T
S

&
 B

ee
s

PS
O

G
lo

ba
l o

pt
im

um
 b

y

PS
O

m
ea

n
no

. o
f

ev
al

ua
tio

ns

m
ea

n
no

. o
f

ev
al

ua
tio

ns

m
ea

n
no

. o
f

ev
al

ua
tio

ns

no
. o

f
ite

ra
tio

ns

G
ol

ds
te

in

 p
ric

e

56
62

53
30

99
9

X
(0

,-1
)

F m

in
=3

(2
9)

75

x
=

(0
, -

0.
99

99
9)

F m

in
 =

 3

D
e

jo
ng

10
16

0

60
00

86
8

X
(1

,1
)

F m
ax

 =
 3

90
5.

93

(3
3)

50

x
=

(0
.0

29
58

, -
2.

04
74

4)

F m
ax

 =
 4

32
4.

10
4.

The values within the bracket indicate that the

iteration number at which PSO starts giving the
optimum solution. The results obtained from the
Genetic, Ants and Bees algorithm [10] are compared
with PSO and the same is presented in table-4. The PSO
gives global optimum solution for Goldstein price
function with less number of iterations compared to GA,
Ants and Bees algorithm. The second test function was
De Jong’s, for which the PSO Algorithm found better
global optimum solution as compared to other
algorithms with minimum number of iterations. Hence,

it is concluded that the PSO performs better than other
algorithms as tabulated in table-4.

6. Conclusion
This paper has presented the computational

implementation of PSO with a numerical illustration.
Simulation results on Goldstein price and De jong
functions show that the proposed algorithm has
remarkable robustness, producing a 100% success rate.
The algorithm converged to the maximum or minimum
without becoming trapped at local optima. The PSO
algorithm generally outperformed other techniques that
were compared with it in terms of speed of optimization
and accuracy of the results obtained. Future research
will focus on the study of the variations in PSO
algorithm such as PSO algorithm with multiple
swarms, Hybrid algorithms, Multi-start methods etc,.

Reference
1. Andries P Engelbrecht (2007), “Computational Intelligence-

An introduction”, Second edition, John wiley & Sons, Ltd,
285-358.

2. Christian Blum and Daniel Merkle (Eds.) (2008), “Swarm
Intelligence- Introduction and Applications”, Springer-Verlag
Berlin Heidelberg, 43-86.

3. Sheng-Ta Hsieh Tsung-Ying Sun Chan-Cheng Liu Shang-Jeng
Tsai (2009), “Efficient Population Utilization Strategy for
Particle Swarm Optimizer”, IEEE Transactions on systems,
man, and cybernetics—Part B: cybernetics, Vol. 39, No. 2, 444-
456.

4. Lee T S Ting T O Lin Y J Than Htay (2007), “A particle swarm
approach for grinding process optimization analysis”, Int J
Adv Manuf Technol, Vol. 33, 1128–1135. DOI 10.1007/s00170-
006-0538-y.

5. Saravanan R Siva Sankar R Asokan P Vijayakumar K
Prabhaharan G (2005), “Optimization of cutting conditions
during continuous finished profile machining using non-
traditional techniques”, Int J Adv Manuf Technol, Vol. 26, 30–
40. DOI 10.1007/s00170-003-1938-x.

6. Asokan P Baskar N Babu K Prabhaharan G Saravanan R
(2005), “Optimization of Surface Grinding Operations Using
Particle Swarm Optimization Technique”, ASME Journal of
Manufacturing Science and Engineering, Vol. 127 / 885. DOI:
10.1115/1.2037085.

7. Yuhui Shi (2004), “Particle Swarm Optimization”, IEEE
Neural Networks Society, 8-13.

8. Venkata Rao R Pawar P J (2010), “Parameter optimization of
a multi-pass milling process using non-traditional optimization
algorithms”, Applied Soft Computing, Vol. 10, 445–456.

9. Singiresu S Rao (2009), “Engineering Optimization: Theory
and Practice”, Fourth Edition, John Wiley & Sons, Inc., pp
708-714.

10. Pham D T Ghanbarzadeh A Koç E Otri S Rahim S Zaidi M
(2006), “The Bees Algorithm – A Novel Tool for Complex
Optimisation Problems”, IPROMS Cardiff University,
England, 454–459.

http://www.smenec.org

