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ABSTRACT 
 In today’s competitive markets, the importance of good scheduling strategies in 
manufacturing companies, lead to the need of developing efficient methods to solve complex 
scheduling problems.  In scheduling attempt to fill the gap between scheduling theory and scheduling 
practice, with the aim to give answer to respond to market demand for more efficient method to solve 
complex scheduling problems. Although classical scheduling theory are one of the most studied field 
in Operations Research,  some practical environments are often ignored in the classical models, since 
they improve the complexity of mathematical models.  For discussion in the gap between scheduling 
theory and scheduling practice Main aim of this research work is to solve two production scheduling 
problems with sequence dependent setup times. The setup times are one of the most common 
complications in scheduling problems, and are usually associated with cleaning operations and 
changing tools and shapes in machines. The first problem considered is a single machine scheduling 
with release dates, sequence dependent setup times and delivery times. The performances measure is 
the maximum lateness. The second problem is a job shop scheduling problem with sequence 
dependent setup times where the objective is to minimize the make span. These two problems were 
addressed using genetic and greedy algorithm. There by, a highly efficient decoding procedure is 
proposed which strongly improves the quality of schedules. We present several priority dispatching 
rules for both problems, followed by a study of their performance. 
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1. Introduction 
Recent  trends  in  scheduling  attempt  to  fill  

the  gap  between  scheduling  theory  and scheduling  
practice, with the aim to give answer to respond to 
market demand for more efficient method to solve 
complex scheduling problems. Although classical 
scheduling theory are one of the most studied field in  
Operations Research,   some practical environments are 
often ignored in the classical models, since they  
improve the complexity of mathematical models. For a 
discussion in the gap between scheduling theory and 
scheduling practice see MacCarthy and Liu (1993).The 
setup times appear frequently in real scheduling 
problems and are one of the most frequent additional 
complications in scheduling.  Moreover, these types of 
constraints are particularly relevant in production 
scheduling. 

The setup time is defined as the time intervals 
between the end of job processing and beginning of next 
job. In this time interval no jobs can be processed in 
machine. The cleaning operations and changing tools 
and shapes are some examples of these setup times, and 
are frequent in manufacturing companies as commercial 
printing, plastics manufacturing, metal and chemical 

processing, paper industry, etc.  The most complicated 
case is sequence- dependent setup times, where the 
setup time depends on the job previously scheduled. A 
typical example is the manufacturing of different colors 
of paint, Conway et al. (1967). In this case a cleaning 
operation time is needed, and is related with sequence of 
the colors processed. Another example is the extrusion 
machine for plastics films.  The time spent in cleaning 
operations depends of film type and color. The trend in 
manufacturing of the production of small batches or unit 
products to satisfy demand and avoid inventory has 
made more relevant the scheduling problems with 
sequence-dependent setup times between all jobs, and 
not only between batches. 

The aim of this paper is to study the 
performance of dispatching priority rules for the single-
machine and job-shop scheduling problems with 
sequence dependent-dependent setup times and to 
indicate how to develop a good heuristic strategy to 
solve these problems in a practical and dynamic 
environment. 
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1.1 Genetic algorithm 
Genetic Algorithms are adaptive methods, 

which may be used to solve search and optimization 
problems (Beasley et al. (1993)). They are based on the 
genetic process of biological organisms. Over many 
generations, natural populations evolve according to the 
principles of natural selection, i.e. survival of the fittest, 
first clearly stated by Charles Darwin in The Origin of 
Species. By mimicking this process, genetic algorithms 
are able to evolve solutions to real world problems, if 
they have been suitably encoded. Before a genetic 
algorithm can be run, a suitable encoding (or 
representation) for the problem must be devised. A 
fitness function is also required, which assigns a figure 
of merit to each encoded solution. During the run, 
parents must be selected for reproduction, and 
recombined to generate offspring. It is assumed that a 
potential solution to a problem may be represented as a 
set of parameters. These parameters (known as genes) 
are joined together to form a string of values 
(chromosome). In genetic terminology, the set of 
parameters represented by a particular chromosome is 
referred to as an individual. The fitness of an individual 
depends on its chromosome and is evaluated by the 
fitness function. The individuals, during the 
reproductive phase, are selected from the population and 
recombined, producing offspring, which comprise the 
next generation. Parents are randomly selected from the 
population using a scheme, which favors fitter 
individuals. Having selected two parents, their 
chromosomes are recombined, typically using 
mechanisms of crossover and mutation. Mutation is 
usually applied to some individuals, to guarantee 
population diversity. 

2. Problem Description 
The problem proposed is a manufacturing 

system consisting of 6 machines M1, M2, …, M6 for 
which several suppositions are made. The machines 
cannot substitute each other and the processing units are 
non-preemptive. In this ideal system no machine 
breakdown occurs and the passing times of jobs 
between machines are neglected. In addition, job-
specific setup times of machines are not considered. 
Generally, a production plan consists of n jobs, and each 
job consists of mi jobs, each of them having to be 
processed by a single machine. The production schedule 
represents an order of the tasks and the starting times for 
each task considering the technological machine order 
of jobs. The completion time of a task can be obtained 
by adding the processing time to its starting time. The 
input data for this problem is represented by the 
technological machine order of the task for each job and 
the corresponding processing time on the machines. The 

problem’s constraints are represented by the operation 
sequence that is different for each product and by the 
fact that the machine can operate only one product at the 
time. The objective is to determine a schedule for the 
tasks on the machines in minimum time. The genetic 
algorithm parameters are: initial population size, 
maximum number of generations, maximum number of 
individuals, and crossover probability and mutation 
probability. The main objective of this algorithm is to 
identify the best plan, i.e. to perform all necessary tasks 
in order to minimize the makespan. 

The genetic representation for each candidate 
solution is: 
(G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11, G12, 
G13, G14, G15), 

Where Gi is a structure that encodes the series 
number, the type and the starting times for each product 
series (there are 5 series for each type of products). 

For example Gi=(si, pi, [t1, t2, t3, t4, t5]), 
represents a structure that refers to the si series of the 
product type noted with pi,, which accesses the first 
machine form the operation sequence at the time t1, the 
second machine form the operation sequence at the time 
t2, the third machine form the operation sequence at the 
time t3, and so on. An individual's performance will be 
evaluated by his fitness function value, which needs to 
be minimized. At the beginning, the fitness function is 
initialized with 0 (because the execution time at the 
beginning of the execution is equal to 0). The objective 
function minimizes the finishing time of tasks n-1 (the 
last task), and therefore minimizes the makespan. The 
function value is updated according to both the ending 
time on the last machine, of the last product and several 
restrictions on total waiting times at machines and job 
sequence, by applying a set of specific rules. 

The genetic operators selected for this 
implementation are: 
 roulette selection; 
 one-point crossover; 
 rotation mutation. 

By using the roulette selection, the future 
parents are chosen by simulating the launching of a 
roulette needle on the field of fitness values for the 
current population. The one-point crossover copies the 
string from the beginning of the chromosome to the 
crossover point from one of the parents and the rest is 
copied from the other parent. The construction of the 
new individual is made considering the restrictions 
imposed by the problem. The rotation mutation 
performs a small chromosome modification by selecting 
a bloc of genes with random length and by inversing the 
gene order. This modification is made considering the 
restrictions imposed by the problem. The genetic 
algorithm stops when either the upper limit of 
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generation or the maximum number of individuals has 
been reached. The individuals with the lowest value of 
the fitness function represent the solution returned by 
this algorithm. This individual represents the production 
scheduling with minimum makespan. 

3. Experimental Results 
To test the genetic algorithm results, we 

propose the production simulation of 15 series of 
products (5 for each of the three products types). The 
machines sequences for each product and the processing 
time on each machine for each product type are 
presented in Table 1. The tasks sequence and the 
necessary time for each job are different for each of the 
three types:  

The task sequence for the first type of products 
(called Product 1) is represented by (M1, M2, M3, M5, 
M6), where Mi represents machine number i; 

The task sequence necessary to obtain the 
second type of products (called Product 2) is represented 
by (M1, M3, M4, M5, M6); 

The task sequence necessary to obtain the third 
type of products (called Product 3) is represented by 
(M1, M4, M5, M6); 

Table 1. Machine sequences and processing time 

Machine 
No parameter Product 

1 
Product 

2 
Product 

3 
Machine 

1 
Task Number 1 1 1 

ExecutionTime 30 10 20 
Machine 

2 
Task Number 2 - - 

ExecutionTime 10 - - 
Machine 

3 
Task Number 3 2 - 

Execution Time 10 10 - 
Machine 

4 
Task Number - 3 2 

ExecutionTime - 10 40 
Machine 

5 
Task Number 4 4 3 

ExecutionTime 30 30 20 
Machine 

6 
Task Number 5 5 4 

ExecutionTime 10 10 10 
 
Three sets of experimental values for the 

specific parameters of the genetic algorithm (initial 
population size, maximum population size, maximum 
generation number, crossover probability, and mutation 
probability). 

Twenty tests have been executed for each set of 
input values, and the final results are synthesized in 
Table 3. Best performances average represents the mean 
of lowest values of the fitness function obtained in the 
60 sets of results. Worst performances average at last 
generation represents the average of highest values of 
the fitness function. The average performance averages 
is calculated considering the values of the medium 
performances obtained during the experimental tests. 

Table 2. Experimental values set 

Values Set/ Parameters 1 2 3 

Number of tests 20 20 20 

Initial population size 10 15 20 

Maximum population size 20 30 50 

Maximum generation number 10 15 20 

Crossover probability 0.5 0.3 0.6 

Mutation probability 0.07 0.02 0.15 

Table 3. Final results 

Final results  

Best performance average at last 
generation 

455 

Worst performance average at last 
generation 

703 

Average performance 579 

Best performance 470 

Best performance solutions number 1 

Best performance solution (0, 10, 3, 14, 13, 6, 5, 9, 8, 1, 

12, 2, 4, 7, 11) 

 
After completing all the experimental tests, the 

lowest value obtained for the fitness function is 470 and 
only one solution has managed to reach this value. This 
solution represents a scheduling plan that manages to 
respect both the planned production and the 480 minutes 
limit imposed by the problem. 

The solution with the minimum fitness function 
returned is: (0, 10, 3, 14, 13, 6, 5, 9, 8, 1, 12, 2, 4, 7, 11) 
and represents the technological order of production 
series. For each series a set of detailed specifications 
(the starting times on each machine, the total execution 
time and the completion times on each resource) is 
stored in a text file. The solution returned by the 
algorithm can be decoded as: first series of products that 
enters the system is Series 0 (that corresponds to the 
Product 1), after that follows the Series 10 (that 
corresponds to Product 3), the Series 3 (that corresponds 
to Product 2), and so on. The list of values that 
correspond to the moments of time in which each series 
accesses the machines is presented in a text file that 
contains the detailed solution. 

3.1 Greedy algorithms 
In an optimization problem, we are given an 

input and asked to compute a structure, subject to various 
constraints, in a manner that either minimizes cost or 
maximizes profit. Such problems arise in many 
applications of science and engineering. Given an 
optimization problem, we are often faced with the 
question of whether the problem can be solved efficiently 
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(as opposed to abrute-force enumeration of all possible 
solutions), and if so, what approach should be used to 
compute the optimal solution? In many optimization 
algorithms a series of selections need to be made. Today 
we will consider a simple design technique for 
optimization problems, called greedy algorithms. 
Intuitively, a greedy algorithm is one that builds up a 
solution for some problem by “myopically” selecting the 
best alternative with each step. When applicable, this 
method typically leads to very simple and efficient 
algorithms. The greedy approach works for a number of 
optimization problems, including some of the most 
fundamental optimization problems in computer science 
(minimum spanning trees, for example). Thus, this is an 
important algorithm design technique to understand. 
Even when greedy algorithms do not produce the 
optimal solution, they often provide fast heuristics 
(nonoptimal solution strategies) and are often used in 
finding good approximations. In this lecture we will 
discuss some examples of simple scheduling problems 
that have efficient greedy. 

3.2 Problem description 
The Simple flow Shop has x processing centers 

which are P1, P2, ……， Pm where processing center 
Pj have pj parallel processors; there are n jobs, and each 
job must be processed by any processor of processing 
centers P1, P2, ……， Pm in order and the processing 
time of job in the processing center is vector Jj, where Jj 
=(j1, j2,……， jm). On processing center can only 
process one job at the same time. One processing center 
consists of one or many parallel processors, all of which 
can work at the same time, processing different jobs. All 
the processes of each job must be done in order, and a 
process shouldn’t be started until its pervious process is 
finished and one process can be done by any parallel 
processor of the corresponding processing center. 
The following requirements must be met when we adopt 
Greedy method to solve flow shop scheduling: 

 Every processor must record a last completion 
time. 

 Every job must also record its last completion 
time in its pervious process to ensure the 
beginning time for process must equals to or 
later than completion time of the previous 
process. 

3.3 Greedy solving strategies 
 Let the current processing center be the first 

processing center, the current processor be the 
first processor of the processing center and the 
current process of the job be the first process. 

 Choose the job which is finished earliest 
currently and place it into the current processor 

and then let the current processor be the next 
processor of the current processing center; 
Repeat the processes until the placement of all 
the jobs are finished, and then start the next 
process. 

 Let the process be the next process. Return to 
b) and execute again until all the processes are 
finished. The algorithm is finished. 

3.3 Greedy algorithm steps for this problem 
Step 1: Initialization of maximum number of 

job. 
Step 2: Schedule the jobs according to their 

completion times. 
Step 3: Initialization the number of processor 

in the job. 
Step 4: After scheduling all the jobs, initiate 

the position of job by use of number of parallel 
processor and number of processor. 

Step 5: Position of job will find by processing 
time of job. This will be continued until reached the 
maximum number of processor. 

Suppose there are n jobs, each of which has m 
processes, that is, there are m processing centers, each 
of which has z1, z2,……, zx processors and the 
processing time for each job at every processing center 
is t1, t2, ……, tn and then the time complexity of 
Greedy Algorithm is 

 
x * ( c + s + n ) …………………..… (1) 
 
Where c is a constant， which is mainly 

determined by P, the number of parallel processors of 
all the processing centers; s is the time complexity of 
the scheduling algorithm. If the scheduling algorithm 
adopt quick sorting, the expected time complexity is 
O(n*log2 n) and the equation (1) transformed into： 

 
x * ( c + s + n ) = O(x*n) ……………(2) 
 
Therefore, the time complexity for Greedy 

Algorithm is O(m*n). 
In the common productions, the number of 

processing centers is not more than 20, each of which 
consists of 10 processors or less and the number of jobs 
is commonly about 20-30. In this way, x=20, n=30, P = 
10+ 10+ ……+10=200, the scheduling time is about 
172, and therefore, the time of Greedy Algorithm is 
about 10*(1+172+30) = 2030. 

There are big difference between the 
approximate solutions acquired by Greedy Algorithm 
and the optimal solutions. But it can be adopted to small 
scale production because of its low time complexity. 
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4. Conclusion 
In this paper, we presented the simple genetic 

and greedy algorithms that are capable of finding good 
solutions for production scheduling problem. The 
genetic algorithms are not well-suited for fine-tuning of 
solutions. This algorithm would be an upgrade to a 
hybrid algorithm. Quality of final solution depends on 
the initial population and pure chance. So that search 
procedure has to be repeated several times for a specific 
problem. Greedy Algorithm also adopted to simulate 
approximate solution. There is difference between the 
approximate salutation and theoretical solution. But it 
can be adopted for small-scale production due to its 
extremely low time complexity. 
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