
Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 3, pp 166-170

www.smenec.org © SME

166

*Corresponding Author - E- mail: amuthiah68@gmail.com

PRODUCTION SCHEDULING PROBLEM SOLVING USING
GENETIC AND GREEDY ALGORITHMS WITH SEQUENCE-

DEPENDENT SET-UP TIMES
*Muthiah A and Ganesan K

Department of Mechanical Engineering, P.S.R.Engineering College, Sivakasi, Tamilnadu, India

ABSTRACT
 In today’s competitive markets, the importance of good scheduling strategies in
manufacturing companies, lead to the need of developing efficient methods to solve complex
scheduling problems. In scheduling attempt to fill the gap between scheduling theory and scheduling
practice, with the aim to give answer to respond to market demand for more efficient method to solve
complex scheduling problems. Although classical scheduling theory are one of the most studied field
in Operations Research, some practical environments are often ignored in the classical models, since
they improve the complexity of mathematical models. For discussion in the gap between scheduling
theory and scheduling practice Main aim of this research work is to solve two production scheduling
problems with sequence dependent setup times. The setup times are one of the most common
complications in scheduling problems, and are usually associated with cleaning operations and
changing tools and shapes in machines. The first problem considered is a single machine scheduling
with release dates, sequence dependent setup times and delivery times. The performances measure is
the maximum lateness. The second problem is a job shop scheduling problem with sequence
dependent setup times where the objective is to minimize the make span. These two problems were
addressed using genetic and greedy algorithm. There by, a highly efficient decoding procedure is
proposed which strongly improves the quality of schedules. We present several priority dispatching
rules for both problems, followed by a study of their performance.

Keywords: Production Scheduling, Set-up Time, Genetic algorithm and Greedy algorithm.

1. Introduction
Recent trends in scheduling attempt to fill

the gap between scheduling theory and scheduling
practice, with the aim to give answer to respond to
market demand for more efficient method to solve
complex scheduling problems. Although classical
scheduling theory are one of the most studied field in
Operations Research, some practical environments are
often ignored in the classical models, since they
improve the complexity of mathematical models. For a
discussion in the gap between scheduling theory and
scheduling practice see MacCarthy and Liu (1993).The
setup times appear frequently in real scheduling
problems and are one of the most frequent additional
complications in scheduling. Moreover, these types of
constraints are particularly relevant in production
scheduling.

The setup time is defined as the time intervals
between the end of job processing and beginning of next
job. In this time interval no jobs can be processed in
machine. The cleaning operations and changing tools
and shapes are some examples of these setup times, and
are frequent in manufacturing companies as commercial
printing, plastics manufacturing, metal and chemical

processing, paper industry, etc. The most complicated
case is sequence- dependent setup times, where the
setup time depends on the job previously scheduled. A
typical example is the manufacturing of different colors
of paint, Conway et al. (1967). In this case a cleaning
operation time is needed, and is related with sequence of
the colors processed. Another example is the extrusion
machine for plastics films. The time spent in cleaning
operations depends of film type and color. The trend in
manufacturing of the production of small batches or unit
products to satisfy demand and avoid inventory has
made more relevant the scheduling problems with
sequence-dependent setup times between all jobs, and
not only between batches.

The aim of this paper is to study the
performance of dispatching priority rules for the single-
machine and job-shop scheduling problems with
sequence dependent-dependent setup times and to
indicate how to develop a good heuristic strategy to
solve these problems in a practical and dynamic
environment.

http://www.smenec.org
mailto:amuthiah68@gmail.com

Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 3, pp 166-170

www.smenec.org © SME

167

1.1 Genetic algorithm
Genetic Algorithms are adaptive methods,

which may be used to solve search and optimization
problems (Beasley et al. (1993)). They are based on the
genetic process of biological organisms. Over many
generations, natural populations evolve according to the
principles of natural selection, i.e. survival of the fittest,
first clearly stated by Charles Darwin in The Origin of
Species. By mimicking this process, genetic algorithms
are able to evolve solutions to real world problems, if
they have been suitably encoded. Before a genetic
algorithm can be run, a suitable encoding (or
representation) for the problem must be devised. A
fitness function is also required, which assigns a figure
of merit to each encoded solution. During the run,
parents must be selected for reproduction, and
recombined to generate offspring. It is assumed that a
potential solution to a problem may be represented as a
set of parameters. These parameters (known as genes)
are joined together to form a string of values
(chromosome). In genetic terminology, the set of
parameters represented by a particular chromosome is
referred to as an individual. The fitness of an individual
depends on its chromosome and is evaluated by the
fitness function. The individuals, during the
reproductive phase, are selected from the population and
recombined, producing offspring, which comprise the
next generation. Parents are randomly selected from the
population using a scheme, which favors fitter
individuals. Having selected two parents, their
chromosomes are recombined, typically using
mechanisms of crossover and mutation. Mutation is
usually applied to some individuals, to guarantee
population diversity.

2. Problem Description
The problem proposed is a manufacturing

system consisting of 6 machines M1, M2, …, M6 for
which several suppositions are made. The machines
cannot substitute each other and the processing units are
non-preemptive. In this ideal system no machine
breakdown occurs and the passing times of jobs
between machines are neglected. In addition, job-
specific setup times of machines are not considered.
Generally, a production plan consists of n jobs, and each
job consists of mi jobs, each of them having to be
processed by a single machine. The production schedule
represents an order of the tasks and the starting times for
each task considering the technological machine order
of jobs. The completion time of a task can be obtained
by adding the processing time to its starting time. The
input data for this problem is represented by the
technological machine order of the task for each job and
the corresponding processing time on the machines. The

problem’s constraints are represented by the operation
sequence that is different for each product and by the
fact that the machine can operate only one product at the
time. The objective is to determine a schedule for the
tasks on the machines in minimum time. The genetic
algorithm parameters are: initial population size,
maximum number of generations, maximum number of
individuals, and crossover probability and mutation
probability. The main objective of this algorithm is to
identify the best plan, i.e. to perform all necessary tasks
in order to minimize the makespan.

The genetic representation for each candidate
solution is:
(G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11, G12,
G13, G14, G15),

Where Gi is a structure that encodes the series
number, the type and the starting times for each product
series (there are 5 series for each type of products).

For example Gi=(si, pi, [t1, t2, t3, t4, t5]),
represents a structure that refers to the si series of the
product type noted with pi,, which accesses the first
machine form the operation sequence at the time t1, the
second machine form the operation sequence at the time
t2, the third machine form the operation sequence at the
time t3, and so on. An individual's performance will be
evaluated by his fitness function value, which needs to
be minimized. At the beginning, the fitness function is
initialized with 0 (because the execution time at the
beginning of the execution is equal to 0). The objective
function minimizes the finishing time of tasks n-1 (the
last task), and therefore minimizes the makespan. The
function value is updated according to both the ending
time on the last machine, of the last product and several
restrictions on total waiting times at machines and job
sequence, by applying a set of specific rules.

The genetic operators selected for this
implementation are:
 roulette selection;
 one-point crossover;
 rotation mutation.

By using the roulette selection, the future
parents are chosen by simulating the launching of a
roulette needle on the field of fitness values for the
current population. The one-point crossover copies the
string from the beginning of the chromosome to the
crossover point from one of the parents and the rest is
copied from the other parent. The construction of the
new individual is made considering the restrictions
imposed by the problem. The rotation mutation
performs a small chromosome modification by selecting
a bloc of genes with random length and by inversing the
gene order. This modification is made considering the
restrictions imposed by the problem. The genetic
algorithm stops when either the upper limit of

http://www.smenec.org

Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 3, pp 166-170

www.smenec.org © SME

168

generation or the maximum number of individuals has
been reached. The individuals with the lowest value of
the fitness function represent the solution returned by
this algorithm. This individual represents the production
scheduling with minimum makespan.

3. Experimental Results
To test the genetic algorithm results, we

propose the production simulation of 15 series of
products (5 for each of the three products types). The
machines sequences for each product and the processing
time on each machine for each product type are
presented in Table 1. The tasks sequence and the
necessary time for each job are different for each of the
three types:

The task sequence for the first type of products
(called Product 1) is represented by (M1, M2, M3, M5,
M6), where Mi represents machine number i;

The task sequence necessary to obtain the
second type of products (called Product 2) is represented
by (M1, M3, M4, M5, M6);

The task sequence necessary to obtain the third
type of products (called Product 3) is represented by
(M1, M4, M5, M6);

Table 1. Machine sequences and processing time

Machine
No parameter Product

1
Product

2
Product

3
Machine

1
Task Number 1 1 1

ExecutionTime 30 10 20
Machine

2
Task Number 2 - -

ExecutionTime 10 - -
Machine

3
Task Number 3 2 -

Execution Time 10 10 -
Machine

4
Task Number - 3 2

ExecutionTime - 10 40
Machine

5
Task Number 4 4 3

ExecutionTime 30 30 20
Machine

6
Task Number 5 5 4

ExecutionTime 10 10 10

Three sets of experimental values for the

specific parameters of the genetic algorithm (initial
population size, maximum population size, maximum
generation number, crossover probability, and mutation
probability).

Twenty tests have been executed for each set of
input values, and the final results are synthesized in
Table 3. Best performances average represents the mean
of lowest values of the fitness function obtained in the
60 sets of results. Worst performances average at last
generation represents the average of highest values of
the fitness function. The average performance averages
is calculated considering the values of the medium
performances obtained during the experimental tests.

Table 2. Experimental values set

Values Set/ Parameters 1 2 3

Number of tests 20 20 20

Initial population size 10 15 20

Maximum population size 20 30 50

Maximum generation number 10 15 20

Crossover probability 0.5 0.3 0.6

Mutation probability 0.07 0.02 0.15

Table 3. Final results

Final results

Best performance average at last
generation

455

Worst performance average at last
generation

703

Average performance 579

Best performance 470

Best performance solutions number 1

Best performance solution (0, 10, 3, 14, 13, 6, 5, 9, 8, 1,

12, 2, 4, 7, 11)

After completing all the experimental tests, the

lowest value obtained for the fitness function is 470 and
only one solution has managed to reach this value. This
solution represents a scheduling plan that manages to
respect both the planned production and the 480 minutes
limit imposed by the problem.

The solution with the minimum fitness function
returned is: (0, 10, 3, 14, 13, 6, 5, 9, 8, 1, 12, 2, 4, 7, 11)
and represents the technological order of production
series. For each series a set of detailed specifications
(the starting times on each machine, the total execution
time and the completion times on each resource) is
stored in a text file. The solution returned by the
algorithm can be decoded as: first series of products that
enters the system is Series 0 (that corresponds to the
Product 1), after that follows the Series 10 (that
corresponds to Product 3), the Series 3 (that corresponds
to Product 2), and so on. The list of values that
correspond to the moments of time in which each series
accesses the machines is presented in a text file that
contains the detailed solution.

3.1 Greedy algorithms
In an optimization problem, we are given an

input and asked to compute a structure, subject to various
constraints, in a manner that either minimizes cost or
maximizes profit. Such problems arise in many
applications of science and engineering. Given an
optimization problem, we are often faced with the
question of whether the problem can be solved efficiently

http://www.smenec.org

Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 3, pp 166-170

www.smenec.org © SME

169

(as opposed to abrute-force enumeration of all possible
solutions), and if so, what approach should be used to
compute the optimal solution? In many optimization
algorithms a series of selections need to be made. Today
we will consider a simple design technique for
optimization problems, called greedy algorithms.
Intuitively, a greedy algorithm is one that builds up a
solution for some problem by “myopically” selecting the
best alternative with each step. When applicable, this
method typically leads to very simple and efficient
algorithms. The greedy approach works for a number of
optimization problems, including some of the most
fundamental optimization problems in computer science
(minimum spanning trees, for example). Thus, this is an
important algorithm design technique to understand.
Even when greedy algorithms do not produce the
optimal solution, they often provide fast heuristics
(nonoptimal solution strategies) and are often used in
finding good approximations. In this lecture we will
discuss some examples of simple scheduling problems
that have efficient greedy.

3.2 Problem description
The Simple flow Shop has x processing centers

which are P1, P2, ……， Pm where processing center
Pj have pj parallel processors; there are n jobs, and each
job must be processed by any processor of processing
centers P1, P2, ……， Pm in order and the processing
time of job in the processing center is vector Jj, where Jj
=(j1, j2,……， jm). On processing center can only
process one job at the same time. One processing center
consists of one or many parallel processors, all of which
can work at the same time, processing different jobs. All
the processes of each job must be done in order, and a
process shouldn’t be started until its pervious process is
finished and one process can be done by any parallel
processor of the corresponding processing center.
The following requirements must be met when we adopt
Greedy method to solve flow shop scheduling:

 Every processor must record a last completion
time.

 Every job must also record its last completion
time in its pervious process to ensure the
beginning time for process must equals to or
later than completion time of the previous
process.

3.3 Greedy solving strategies
 Let the current processing center be the first

processing center, the current processor be the
first processor of the processing center and the
current process of the job be the first process.

 Choose the job which is finished earliest
currently and place it into the current processor

and then let the current processor be the next
processor of the current processing center;
Repeat the processes until the placement of all
the jobs are finished, and then start the next
process.

 Let the process be the next process. Return to
b) and execute again until all the processes are
finished. The algorithm is finished.

3.3 Greedy algorithm steps for this problem
Step 1: Initialization of maximum number of

job.
Step 2: Schedule the jobs according to their

completion times.
Step 3: Initialization the number of processor

in the job.
Step 4: After scheduling all the jobs, initiate

the position of job by use of number of parallel
processor and number of processor.

Step 5: Position of job will find by processing
time of job. This will be continued until reached the
maximum number of processor.

Suppose there are n jobs, each of which has m
processes, that is, there are m processing centers, each
of which has z1, z2,……, zx processors and the
processing time for each job at every processing center
is t1, t2, ……, tn and then the time complexity of
Greedy Algorithm is

x * (c + s + n) …………………..… (1)

Where c is a constant， which is mainly

determined by P, the number of parallel processors of
all the processing centers; s is the time complexity of
the scheduling algorithm. If the scheduling algorithm
adopt quick sorting, the expected time complexity is
O(n*log2 n) and the equation (1) transformed into：

x * (c + s + n) = O(x*n) ……………(2)

Therefore, the time complexity for Greedy

Algorithm is O(m*n).
In the common productions, the number of

processing centers is not more than 20, each of which
consists of 10 processors or less and the number of jobs
is commonly about 20-30. In this way, x=20, n=30, P =
10+ 10+ ……+10=200, the scheduling time is about
172, and therefore, the time of Greedy Algorithm is
about 10*(1+172+30) = 2030.

There are big difference between the
approximate solutions acquired by Greedy Algorithm
and the optimal solutions. But it can be adopted to small
scale production because of its low time complexity.

http://www.smenec.org

Journal of Manufacturing Engineering, September 2015, Vol. 10, Issue. 3, pp 166-170

www.smenec.org © SME

170

4. Conclusion
In this paper, we presented the simple genetic

and greedy algorithms that are capable of finding good
solutions for production scheduling problem. The
genetic algorithms are not well-suited for fine-tuning of
solutions. This algorithm would be an upgrade to a
hybrid algorithm. Quality of final solution depends on
the initial population and pure chance. So that search
procedure has to be repeated several times for a specific
problem. Greedy Algorithm also adopted to simulate
approximate solution. There is difference between the
approximate salutation and theoretical solution. But it
can be adopted for small-scale production due to its
extremely low time complexity.

References
1. Adams J Balas E and Zawack D (1988), “The Shifting

Bottleneck Procedure for Job Shop Scheduling”, Management
Science, Vol. 34(3), 391-401.

2. Barman S (1997), “Simple priority rule combinations: an
approach to improve both flow time and tardiness”,
International Journal of Production Research, Vol.35 (10),
2857-2870.

3. Beasley J E (1990), OR-Library: “Distributing Test Problems by
Electronic Mail”, Journal of the Operational Research Society,
Vol. 41(11), 1069-1072.

4. Bratley P Fox B L and Schrage L E (1983), “A guide to
Simulation”, New York: Springer- Verlag.

5. Bruno J and Downey P (1978), “Complexity of Task Sequencing
With Deadlines”, Setup Times and Changeover Costs. SIAM
Journal of Computing, Vol.7, 393-404.

6. Carlier J (1982), “The one-machine sequencing problem”,
European Journal of Operational Research,Vol. 11, 42-47.

7. Conway R W Maxwell W L and Miller L W (1967), “Theory of
Scheduling”, eading, Massachussets: Addison-Wesley.

8. Fisher H and Thompson G L (1963), “Probabilistic learning
combinations of local job-shop scheduling rules”, Industrial
Scheduling. (Englewood Cliffs, New Jersey: Prentice Hall: 225-
251).

9. Garey M R and Johnson D S (1979), “Computers and
Intractability: A Guide to the Theory of NP-ompleteness”, San
Francisco: Freeman.

10. Grabowski J E Nowicki E and Zdrzalka S (1986), “A block
approach for single machine scheduling with release dates and
due dates”, European Journal of Operational Research, Vol. 26,
278-285.

11. Gupta J N D (1988), “Single facility scheduling with multiple
job classe”,. European journal Operations Research, Vol.8, 42-
45.

12. Hoogeveen J A Lenstra J K and van de Velde S L (1997),
“Sequencing and scheduling: an annotated bibliography,
Memorandum COSOR 97-02”, Eindhoven University of
Technoloy, Eindhoven, The Nederlands.

13. Ríos R and Bard J (1997), “A branch-and-bound algorithm for
flowshop scheduling with setup times”, Technical Report
ORP97-02, University of Texas, Austin.

14. Schrage L (1971), “Obtaining optimal solutions to resource
constrained network scheduling problem”, unpublished
manuscript.

15. Storer R H Wu S D and Vaccari R (1992), “New search spaces
for sequencing instances with application to job-shop
scheduling”, Management Science, Vol. 38, 1495-1509.

16. Taillard E (1993), “Benchmarks for basic scheduling
problems”, European Journal of Operational Research,Vol. 64,
278-285.

17. Williams D and Wirth A (1996), “A New Heuristic for a Single
Machine Scheduling Problem with Setup Times”, Journal of the
Operations Research Society, Vol. 47, 175-180.

18. Florentina Alina Chircu (2010), Using Genetic Algorithms for
Production Scheduling, Petroleum-Gas University of Ploiesti,
Informatics Department, Ploieşti, Romania.

19. Ashwani Dhingra, Pankaj Chandna, Hybrid Genetic Algorithm
for Multicriteria Scheduling with Sequence Dependent Set up
Time, Haryana,India.

20. João António Noivoa and Helena Ramalhinho-Lourençob,
Solving two production scheduling problems with sequence-
dependent set-up times, Departamento de Electrónica Industrial,
Universidade do Minho, Campus de Azurém, 4800Guimarães,
Portugal.

21. Man K F Tang K S and Kwong S (1996), Member IEEE,
Genetic Algorithms: Concepts and Applications.

22. Falkenauer E and Bouffouix S, “A Genetic Algorithm for Job
Shop”, CRIF - Research Center for Belgian Metalworking
Industry, Brussels, Belgium.

23. Ruben Ruiz Thomas St Äutzley, “An Iterated Greedy Algorithm
for the Flowshop Problem with Sequence Dependent Setup
Times”, Valencia, Spain.

24. Avi Dechter and Rina Dechter (1989), “On the Greedy solution
of Ordering Problems”, CA.

25. Naderi B and Rubén Ruiz, “The distributed permutation
flowshop scheduling problem”

http://www.smenec.org

