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ABSTRACT 
 The new challenges of Agile Manufacturing system led to study of computational 
cooperative problem solving models. The goal is to develop appropriate computational approaches to 
support adaptive, cost-effective responsiveness. In particular, the challenging problem of job shop 
scheduling, this has been one of the primary foci of production scheduling research. In this paper, we 
propose genetic algorithm to overcome the impact of agile environment such as changing customers’ 
preferences, machine breakdowns, deadlocks, etc. by inserting the slack that can absorb these 
disruptions without affecting the other scheduled activities. The proposed algorithm also focuses on 
the impact of agility in the job shop environment in such highly complex scenarios. The algorithm 
inherits the delicacies of Genetic Algorithm (GA) converges towards optimality in less computational 
time. The proposed model encompasses the objectives of minimizing the delay time and flow time 
using the genetic algorithm.    
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1. Introduction 
Present scenario being a highly competitive 

one, urges the manufacturers to strive hard for achieving 
the timely and cost effective production that can 
facilitate them to respond to the exponentially 
increasing demands of the customers. Agile 
manufacturing refers to the ability of a company to 
modify its production according to the sudden changes 
in the customers’ demands. The effectiveness of the 
production schedule in the dynamic environment 
depends on its ability to cope up the various stochastic 
disturbances such as changes in machine schedule, 
breakdown of machines, deadlocks etc. in the system. It 
is very difficult task to predict the actual states of agile 
manufacturing where many uncertainties related to 
change in customers’ preferences, arrival of parts, 
machine breakdowns, tool breakages, deadlocks, etc. 
exist and this is the primary reason, why the 
implementation of the on-line scheduling is practically 
infeasible. In this regard, authors have primarily focused 
to develop such extrapolative schedules, which 
efficiently take care of the disruptions on the shop floor 
and retain the high performance value of the system. 
Main motive behind these schedules is to assign the 
shop resources to the different jobs effectively for 
optimizing the performance measures of agile 
manufacturing. The uncertainties in agile manufacturing 
environments have been broadly classified in the three 
categories such as, sudden change in customers’ 

demand, complete unknowns, suspicious about the 
future, and known uncertainties. The Genetic Algorithm 
(GA) based solution methodology is employed to obtain 
optimal or near optimal performance measure for the 
system i.e. minimum make span, average flow time and 
delay time for the schedules in an agile manufacturing. 
Intensive computational experiments have been 
performed for different scenarios of the problem in agile 
manufacturing. 

 The paper attempted to study of the impact of 
agility measures under dynamic and changing 
conditions in the job shop scheduling problem. In order 
to satisfy the need of agile manufacturing systems, job 
shop scheduling problem focusing with stochastic 
process time has become one of the newest issues that 
have been increasing recently. Section 2 of the paper 
describes literature review. A complete modeling of the 
problem that takes into account the uncertainties is 
detailed in section 3. Genetic algorithm and their 
application over the underlying problem are discussed in 
section 4. Computational experiments are presented in 
the section 5. The paper is concluded in section 6. 

2. Literature review 
In general, there are types of problems solved 

in the literature that are related to the scheduling 
problems discussed here. One type of related problems 



Journal of Manufacturing Engineering, June 2015, Vol. 10, Issue. 2, pp 069-073   
 

www.smenec.org                                                                                                                                                     © SME 
 

70

are those of scheduling products represented by simple 
and complex digraphs in a two-stage manufacturing 
system first solved as an aggregate scheduling problem 
in Kusiak (1989). Here, the aggregate scheduling 
problem is modeled as the two machine flow shop 
scheduling problems. However, the aggregate 
scheduling problems solved in Kusiak (1989) assume 
that only one processing unit is available at both 
machining and assembly stages and this assumption 
does not reflect the real situation in implementing 
product differentiation strategies in an agile 
manufacturing environment. Another type of related 
scheduling problems solved in the literature are the flow 
shop problems with parallel machines (FSPM). FSPM is 
also a basic model for flexible flow line scheduling 
problems solved in the literature. Hunsucker and Shah 
(1994) reviewed industrial applications of scheduling in 
chemical engineering, computer systems, tele networks, 
etc.  Brah and Hunsucker (1991) developed a branch-
and-bound algorithm to solve the make span FMPM 
scheduling problem. Mathematical models of FSPM 
have been discussed in Brah et al. (1991). Some special 
cases of FSPM have also been studied in the literature. 
Gupta (1988) developed a heuristic algorithm for a two-
stage problem with one machine at the second stage. 
Sriskandarajah and Sethi (1989) developed heuristics 
for a two-stage case and established the worst case 
bounds. Two heuristic algorithms generating high-
quality solutions for a two-stage case with one machine 
at stage one and several machines at stage two have 
been developed by Gupta and Tunc (1991). Chen (1995) 
developed heuristics to solve the special cases for 
systems that have only two centres or systems where 
only one of the centres has parallel machines. 
Extensions of FSPM that incorporate buffers and 
transporters between centres have been studied by 
Wittrock (1988) and Sawik (1993). Flow shop 
scheduling problems and parallel machine scheduling 
problems represent another class of related problems. 
The two-machine flow shop-scheduling problem can be 
solved by Johnson’s algorithm (1954). However, in 
general, if the number of machines in a flow shop is 
more than two, then the scheduling problem is known to 
be NP-complete (e.g. Gonzalez and Sahni 1978). While 
the majority of research into flow shop scheduling is 
focused on the serial-type flow shop, a three-machine 
assembly- type flow shop-scheduling problem was 
studied by Lee et al. (1993). Parallel machine 
scheduling problem (PkCmax) has been proved by 
Garey and Johnson (1978) as NP-hard in a strong sense 
when the number of machines is unlimited. However, 
the problem is solvable in pseudo-polynomial time 
when the number of machines is fixed and thus NP-hard 
only in the ordinary sense. A recent survey on parallel 
machine scheduling problems was by Cheng and Sin 

(1990). Blazewicz et al. (1991) proposed optimal 
algorithms. However, most algorithms developed for 
solving PkCmax are heuristics (e.g. Graham 1969). 
Except for the scheduling problems solved by Kusiak 
(1989), none of the related scheduling problems solved 
in the literature considered product structures 
represented by the simple and complex digraphs even 
though they provide the best structural information of 
the products. Lee and Vairaktarakis (1998) considered a 
similar system structure in their paper to the problem 
discussed in this paper and developed heuristics with 
worst-case error bounds. This structure allows the 
implementation of the product differentiation concept. A 
three-machine assembly-type flow shop-scheduling 
problem was studied by Lee et al. (1993). 

3. Agile Job Shop Scheduling Problem 
Model Formulation 

The agile job shop scheduling problem deals 
with the allocation of jobs to different machines in agile 
environment over time span. It is a decision making 
process in agile environment with the goal of optimizing 
more objectives to satisfy the need of agility. Suppose 
there are ݊ jobs (ܬଵ, ଶܬ ,			… ,  ௡), which is to be processedܬ
on ݉  machines (ܯଵ,ܯଶ ,			…  and these jobs are	௠),ܯ,
subject to many constraints. The optimal solution is to 
find out for given objective functions and constraints. 
Due to agile environment some objectives and 
constraints may possess uncertainty of type fuzzy, 
stochastic, or others in nature. The completion of job ܬ௜ 
consists of a sequence of ݊௜ operations 
ଵܱ௜ ,ܱଶ௜ ,			. . . ,ܱ௡೔௜ , which is called as its machine list. 

The precedence of the machine list is defined as 
௧ܱ௜ → ௧ܱାଵ,௜(ݐ = 1,2, … ,݊௜ − 1). For a given operation 
௧ܱ௜ , denote by ࣭ݐ௧௜ the time units needed to process job 
݆௜ on machineߤ௧௜ ∈ ଶܯ,ଵܯ} ,			…    .{௠ܯ,
 
Notation:ࡶ = ,૚ࡶ} ,૛ࡶ … ,  set of jobs, where ݊ is the:{࢔ࡶ
number of jobs. 
ܯ = ,ଶܯ,ଵܯ} …  ௠}:set of machines, where ݉ is theܯ,
number of machines. 
݇ = number of operations to be performed. 
S jk    = slack of operation k with respect to the part type j.  
࣭ ௜ܲ௞ = processing time of job ݆ on machine ݉ with 
respect to operation k, a stochastic variable subject to 
normal distribution 
Y m   = mean repair duration on machine m.         

  = mean rate at which breakdowns occur. 
KT  = Part type counter. 
Ej, k = Starting time of operation k for part j. 
Cjk = completion time of  k for part type j. 
Dj  = Distance between the part types. 
Zw  = extrapolative schedule. 

m
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V (a, b)= length of the longest path from a to b. 
 = processing speed or capacity. 
= an increasing function of variability. 

ि= an increasing function of agility. 
E (Ψm)= expected flow time. 
λj  = part processing time of part j. 
µ = ratio of processing to part inter-arrival time. 

a = COV of the processing time. 

b = COV of the part inter-arrival time. 
 = part arrival rate. 

E jk = starting time of the operation k on part j. 
Ps = extrapolative schedule. 

nY  = minimum time processing part j .                                                
G(X)= Gaussian probability distribution. 
P(X)= Poisson’s probability distribution. 

mp
 = priority of the machine.  

fj = mean time between failures. 
 Each part type requires an operation on the 

corresponding machine with an average processing time 
1/λj. The part inter-arrival and processing times are 
exponentially distributed with respect to the means 1/ 

j
and 1/λj. Symbol 

2
a

  and 
2
b  refer, respectively to 

the coefficients of variance. Higher values of  
2
a

  
correspond to the higher variability in part type arrivals 
and can be used to indicate higher part type demand 

variability and predictability. The values of 
2
b  explain 

the variability in part processing times that is in the 
model to represent the variability in the processing 
capabilities of the machine, or the processing 
requirements of the part types. The part related 

variability ( ) is due to part variety in the product mix 
or too frequent changes in design and manufacturing 
specifications of the part types and is expressed in 
equation (1).  



2 2 2 2

2 2
(1 )( )

2(1 )
b a b

b

   
 

 
 *P(X)      … (1) 

The coefficient of variance b  is 
mathematically expressed as, 

2

2 2

1

1 1J
j

b
j j


 

  

 
   

 


      … (2) 
The overall average arrival rate is expressed as, 

1

J

j
j

 



       … (3) 

and average processing time is expressed as, 

 1

1 1J
j

j j


  


       … (4) 

The effect of agility on the performance can be 
easily shown to increase in magnitude as variability in 
either processing or demand increase. That is, the 
performance improvement due to agility rises in 
significance as variability increases. The agility plays a 
major role in determination of the performance 
measures of the system, thus agility is expressed as an 
increasing function following the Gaussian probability 
distribution and shown in Figure 1. 

 Fig. 1 Agility versus Gaussian distribution function 

 

*zRm G
m m

 

    

  (x)  … (5) 

The priorities for the machines are evaluated as follows: 

j
m

f
p

f


    … (6) 

Objective functions: 

 

j= 1, 2, 3 …J; k=1, 2, 3…K 
Subject to : 





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m
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   … (10) 
5     … (11) 
0                   … (12) 

jkjk CE 
   … (13) 

1b m  
   … (14) 

1 1

( )
J K

jk jk m
j k

MT m TA
 

 
 … (15)  

4. Solution Methodology 

The proposed genetic algorithm (GA) 
Step 1: Assign number of generation n = 1. Assign the 
values of population size    (P), maximum number of 
generation (G) and T (1). 
Step 2: Randomly generate a set of population size 
chromosomes as initial    parent population.  
Step 3: Compute the fitness (X1) for each parent. 
Step 4: By using crossover and mutation produce 
children from each parent. 
Step 5: Compute fitness function of each child of every 
family. Select the best one in every family according to 
having highest fitness value (X2). 
Step 6: Compute ΔX = X2 – X1. 
Step 7: Get the parent for next generation out of each 
family, adopting following transition rules: If (ΔX>0 or 
F (T (n), ΔX)>γ) best child is accepted as parent for new 
generation. Else  the earlier one remains as new parent. 
Step 8: Reduce the temperature as per following cooling 
schedule:  

 ))1(log(1
)1(*2.3)( nT

TnT



 

Step 9: Perform n = n+1. 
Step 10: Select the best one of the final population 
according to having highest fitness value. This gives the 
optimal or sub-optimal solution. 

5. Results and discussions 
The crossover probability is taken to be 0.6 and 

mutation rate 0.02. The initial temperature was 
considered to be 600 and final temperature was 20 in the 
applied algorithm. To show the impact of agility on the 
flow time, the data sets are prepared with the 
incorporation of agility under the similar scenario. 
System performance is obtained for various levels of 
variability and it is achieved by gradually increasing the 
variance in the part inter-arrival times and processing 

times. The effect of agility shows a diminishing rate of 
return curve for all levels of variability, it also shows 
that effect of agility is particularly significant when 
either demand or processing variability is high. With 
increasing agility after certain level the flow time 
remains almost unaffected (figure 2). The results of the 
data sets under such breakdown scenarios, after 
successive number of iterations reflect the superiority of 
the incorporated algorithm to converge towards the 
optimality. The results comparison of the average flow 
time with respect to the agility measures has been 
shown in figure (2) and (3).  The plot for the time taken 
versus the agility is shown in figure (4). 

 

 

Fig. 2 Flow time versus Agility (= 6, =.06) 

 

Fig. 3 Flow Time versus Agility (β=6, =.06) 

 

Fig. 4 Average time taken versus agility  

The proposed GA approach has been also 
compared with some standard priority rules and results 
are much better than those obtained from the priority 
rules (Figure 5). These comparisons show significant 
improvement in the results on applying the GA 
algorithm and the results converge towards the 
optimality nearly after (40) iterations. 
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Fig. 5 Comparison of GA with priority rules 

6. Conclusion 
In this proposed work the performance 

measurement under agile manufacturing system has 
been studied. In this research we have incorporated 
genetic algorithm (GA) to enhance the performance 
under such unpredictable scenario. To tackle the 
existing uncertainties such as customers’ preference, 
machine breakdowns, deadlocks etc. in the job shop 
environment first an extrapolative schedule is generated 
that is modified when an unexpected event occurs. The 
adequate slack is inserted in the extrapolated schedule to 
absorb the undesirable impact of interruptions. The 
main intention is to optimize the performance measures 
of the agile manufacturing system. The paper also 
focuses on the various aspects of the impact of agility 
over the performance of the system under dynamic 
conditions. The present work deals with the objectives 
of minimizing the average delay time and average flow 
time. The result of the proposed approach reveals the 
superiority of the algorithm in solving such complex 
problems. In our view the proposed approach can be 
extended to cover more practical situations. There is 
also wide scope for improving the performance of the 
considered agile manufacturing system. The ability of 
the GA algorithm to converge towards the optimality in 
less computational time, and escaping the local optima, 
lefts its scope of further extension in other complex 
scenarios. The real time problems are more complex 
than those considered in this paper. Hence there is need 
of further study in this area involving more constraints 
and objective functions. The cooling schedule of the GA 
algorithm can be further improved to give much better 
results. 
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