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ABSTRACT 
 In this study, we use machine vision to inspection of welding surfaces produced by the MIG 
welding Process. Machine vision allows for the inspection of welded surfaces without touching or 
scratching the surface, and provides the flexibility for inspection parts. In this experimental work, 
inspection system  has been developed for identifying and classifying the surface defects of fillet joint 
as per standard EN25817 in Metal Inert Gas (MIG) welding. In this proposed vision system, images 
of welding surfaces are captured through CCD camera. From these images, the regions of interest are 
segmented and the average gray levels of the characteristic features of these images are calculated.. 
Finally, welded joints can be classified into one of the four pre-defined ones based on the back 
propagation neural network. This proposed system, 80  welded samples are analysed with two 
different feature extraction methods. 

Keywords: Machine Vision, Weld Classification, MIG Welding and Vision Inspection Back 
Propagation Neuralnetwork (BPN).              

1. Introduction 
 
         

With the development of surface mounting 
technology, the needs for automatic inspection are ever 
increasing. The current trends towards miniaturization 
of components, denser packing of boards, surface 
mounting technology, and highly automated assembly 
equipment make the task of detecting these defects more 
critical and more difficult. Machine vision may 
effectively replace human inspection in such demanding 
cases. Non-destructive testing (NDT) is a branch of 
engineering concerned with methods of detecting 
defects in objects without altering the object in any way. 
The reliable detection of weld defects is one of the most 
important tasks in non-destructive testing. 
Improvements in these methods are necessary, because 
the human factor still has great influences on the 
evaluation.     

A feature is a value describing an object in a 
numerical form and the selection of good features is 
critical to the success of any classification algorithm. 
Generally 2D features are computationally simpler than 
3Dfeatures [1]. Efficient techniques for solder joint 
inspection have been described using three layers of 
ring-shaped LED’s with different illumination angles, 
three frames of images were sequentially obtained and 
segmented the regions and then classified the solder 
joints using a fuzzy membership function and neural 
network classifier [1]. S.Jagannathan,et al[2] developed 
a new system for the intelligent machine vision  
inspection of wave-solder joints. A modified Intelligent 

Histogram Regarding (IHR) technique was used that 
divides the gray level histogram of the captured images 
from a joint in to different modes and the neural 
networks was employed to identify and classify the 
defective solder joints. The back-propagation algorithm 
was employed to train the neural networks. After 
training, the neural network was employed to 
successfully identify and classify the defects of welded 
joints. They used images captured with light sources of 
ring shaped LEDs with different illumination angles in 
solder joints. In ring shaped LEDs illuminations are 
focused in centre of the image. In welding images, sizes 
of beads are not in circular shape and some 
information’s about welding beads are missed. Poor 
quality radiographic images have led to the development 
of various automatic defect detection algorithms that 
focus on extracting defects using various image 
segmentation methods [2, 3, and 9]. Neural networks are 
used to improve the computational speed of the system 
for such activities as feature extraction and 
interpretation [3]. Two-dimensional images taken under 
controlled conditions of good lighting and low noise is 
the simplified strategy of industrial vision applications 
[4]. NDT testing is particularly important for critical 
applications where weld failure can be catastrophic, 
such as in pressure vessels, load-bearing structural 
members, and power plants [5]. Lashkia [8] proposed on 
a fuzzy reasoning to detect low-contrast defects using 
local image characteristics, such as special contrast, 
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special variance and distance between two contrast 
regions. As the measurement system is Optical, only the 
surface of the weld was mapped. A digitized 
radiographic image is often corrupted by non-uniform 
illumination, noise and poor contrast [8].  The applied 
inspection criteria specified in the standards include 
measurement of the height and cross sectional area of 
the weld, together with detection of porosity density and 
undercuts [9]. The inspection welds is important not 
only to ensure the integrity of the welded engineering 
artifacts but also to improve the fabrication process [10]. 
Silva et al [11] also concluded that the lack of high 
number of samples to increase the reliability of the 
classification is a common problem in the automatic 
interpretation of weld radiographs. Radiographic films 
usually have noise and deficient contrast due to intrinsic 
factors involved in the inspection technique, such as 
non-uniform illumination and the limited range of 
intensities of the images capture device [12].  Liao and 
Li developed welding flaw detection based on the fitted 
line profiles of a weld image and successfully detected 
93.33% of various defects from linear welds [16].  

The information capture from different 
viewpoints can reinforce the diagnosis when a single 
image is insufficient [15]. In tune with the trend, four 
zones of LEDs with different illumination angles used 
to capture the weld joints. This new introduced vision 
system, 2D feature average gray values are extracted 
from the MIG welding joints and are classified by using 
back propagation neural network as good weld, excess 
weld, insufficient weld and no weld. In general, the 
calibration process is difficult to carry out in industrial 
environment due to vibrations and random movements 
that vary with time [15]. Therefore, any calibration 
process is not followed in this method. This paper is 
organized as follows: section 2 represents the overview 
of the system. The experimentation functions are 
discussed in section 3. Preprocessing of digitized image 
and feature extraction are discussed in section 4 and 5. 
Neural classifier is discussed in section 6. Test results 
are presented in section 7, followed by the conclusions. 

2. System Overview 
      The overall inspection system is shown in 

Fig.1 RAPID 1 V3.4 machine vision system is used to 
capture the images. Vision based inspection systems are 
set of new technologies for non- contact inspections and 
measurements. The instruments integrate multitude of 
technologies including digital imaging, electronics, 
embedded systems and software. The Rapid-1 V3.4, a 
vision based metrology instrument utilizes these cutting 
edges technologies to enable to do precise inspections. 
Further innovative design and creative developments 
have led to a wide range of hardware and software 

capabilities that will enhance our ability not only inspect 
manufactured parts but also in our design and 
development. Rapid-1 is a capable of carrying out 
diverse measurement task including all basic 2D 
measurements, depth and even threads parameters. Its 
primary advantage lies in its high resolution optics 
combined with precision work stage and power 
software. 

The quality of imaging cannot be changed, if 
the hardware is not suitably designed [10].      

           

 
(a) 

 
(b) 

Fig. 1 (a) Schematic diagram of Machine Vision 
System for MIG Welding Inspection  

          (b)  RAPID 1 Machine Vision System for 
Acquiring the Images 

3. Experimentation 
     The main three functions are carried out in 

this experimentation. First of all different type of joints 
like acceptable and unacceptable joints in the fillet 
welding joint in MIG welding process has been 
prepared as per Standard EN 25817. Carbon steel plate 
size 80 x 20 x 4 mm is used as a parent material in this 
work. The voltage and current maintain during welding 
is 27V and 260 Amps. ER 70S6 with 1.2 mm diameter 
electrode is used in this experiment. Carbon dioxide is 
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supplied during the welding process and standoff 
distance is maintained in15mm. 

Second one is based on the values obtained for 
the various measurements acceptance or non acceptance 
of the weld will be decided in conformity with EN 
25817 acceptance levels for intermediate service 
conditions. Fig.3 depicts the different types of 
acceptable and unacceptable groove weld profile in fillet 
joint. Fig.2 (a) shows the image of good weld, h, a and t 
denoted reinforcement height, nominal fillet weld throat 
thickness and thickness of the work piece respectively. 
Good weld refers, when the reinforcement height (h) has 
not been come h ≤ 1mm+0.3a, maximum of 5mm and 
also under groove height has not been come h1≤ 0.1t, 
maximum of 1mm. Fig.2 (b) shows the excessive weld, 
h ≤ 2mm + 0.2a. When the reinforcement height (h) of 
the weld lies between 2 to 3mm, then it is called as 
excessive weld. Fig.2 (c) refers insufficient weld,s 
denote the prescribed depth of penetration. When  the 
under groove height (h) lies between h ≤ 0.1s, then it is 
called as insufficient weld. Fig.2 (d) illustrates No weld. 
When the groove surface is not filled, then it is called 
No weld. 

The type of welding defects to be inspected 
includes defect free welded joint (good weld), excess 
weld, insufficient weld and no weld. Fig.3 shows the 
image of defect free welded joint. Fig.4 shows the 
image of excess weld.  Fig.5 shows the image of 
insufficient weld. Fig.6 shows the image of no weld. 
 

Acceptable groove weld profile in Fillet joint 

 
 
 
 

2(a) Good weld 

h ≤ 1mm+0.3a ,max 5 mm 
where  a = nominal fillet weld throat thickness 

s = prescribed depth of penetration 
h = size (height or width) of imperfection in 

mm 
t = work piece thickness 

 
 
 

Unacceptable groove weld profile in Fillet joint 
 

 

 

 

 

 

 

2(b) Excessive weld h ≤ 2mm+0.2a 

 
 

 

 

 

 

 

 

2(c) Insufficient weld 

h ≤ 0.1s ,max 1.5 mm 
 
 
 
 
 
 
 
 
 
 

2(d) No weld 

Fig.2 Different types of Acceptable and Unacceptable 
Groove Weld Profile in Fillet Joint as per EN 25817: 

(a) Good weld (b) Excessive weld (c) Insufficient 
weld (d) No weld                

       
 
 
 
 
 
 
single images 
 

Fig.3 Image of Good Weld    Fig.4 Image of Excess Weld 
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  Fig. 5 Image of        Fig.6 Image of No Weld 
  Insufficient Weld           

4. Pre Processing 
Image processing seeks to Four frames of 

images are sequentially captured as four zones of LEDs 
are turned on, one after the other. Image processing 
seeks to modify and prepare the pixel values of a 
digitized image to produce more suitable form for 
subsequent operations. In this stage, the weld region 
must be isolated from the rest of the parent metals. 
Noise on images usually appears as randomly dispersed 
pixels having different values of intensity in relation to 
their nearest pixels. Low-pass filters are usually 
employed to remove the noise and extending the 
technique of Fuzzy k means clustering followed 
cropping mechanism, The ROI has been identified. 

5. Feature Extraction 
A feature is a value describing an object in a 

numerical form and the selection of good features is 
critical to the success of any classification algorithm. 
Rather than directly using the raw data, some measures 
or descriptors are often selected upon which, the classes 
of the observed objects are determined by classifier. 
These measures, commonly called features, form the 
feature space that is generally of a much lower 
dimension than the data space. The process of searching 
for internal structure in data items, that is, for features or 
properties of the data is called feature extraction. The 
process of choosing desirable features from the initial 
set of candidates is called feature selection. The 
relevancy of extracted features is determined either by 
trial and error or based on an automatic feature selection 
procedure [7].   

Extraction of desirable features is an extremely 
difficult task and very much problem dependent [5]. In 
order to distinguish welds from non welds, features with 
discriminating capability must be identified [6].  In this 
process, 2D features are the average gray levels and the 
percentage of highlights of I1, I2, I3, I4 are extracted from 
the digitized images of samples. The Bitmap Images are 
read and stored it into an array variable. Then true color 
images are converted into a gray scale images. After this 

selection, a region of interest is cropped for further 
processing. Finally average values of pixels in the 
cropped images are computed and two types of feature 
extractions (2D feature vector and Gaussian distribution 
based features) as follows [1]. 

1) 2D feature vector 

x=൫x1,x2,x3,x4൯              (1.1) 

x1  =
1
N
∑ I1  (x,y)(x,y)∈R    (1.2) 

x2= 1
N
∑ I2  ( x,y )(x,y)∈R    (1.3) 

x3  =
1
N
∑ I3  (x,y)(x,y)∈R    (1.4) 

x4  =
1
N
∑ I4 (x,y)(x,y)∈R    (1.5) 

Where,  x is the 2D feature vector 
x1  is the  average gray scale value of zone 1 cropped 
image 
x2  is the  average gray scale value of zone 2 cropped 
image 
x3  is the  average gray scale value of zone 3 cropped 
image 
x4  is the  average gray scale value of zone 4 cropped 
image 
 Ii(x,y) is the image of ith layer, 
                            R is the welded region, and N is the 
number of pixels in the welded region. 

2) Gaussian distribution based features 

(F1)Mean µ = ܣ + ଵ
ே
∑ ௜݂݀௜௡
௜ୀଵ                      

where, ݀௜ = ௫೔ି஺
஼

           

  (F2)Standard deviation 
 

σ = ඩcଶ ቐ
1
ܰ
෍ ௜݂݀௜

ଶ
௡

௜ୀଵ

 − ൭
1
ܰ
෍ ௜݂݀௜

௡

௜ୀଵ

൱
ଶ

     ቑ 

 

(F3)Co-eff of variation ܥ.ܸ = 100 ∗ ஢
୶ത
  

(F4)Median  M = l + ୦
୤
ቀ୒
ଶ
− cቁ  

(F5)Mode  Mo = l + ୦(୤భି୤బ)
ଶ୤భି୤బି୤మ
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(F6)Pearson’s co-eff of skewness ܵ௞ = ଷ(ெିெ೚)
ఙ

 

where σ is the standard deviation of the distribution 

(F7)Bowley’s co-eff of skewness ܵ௞ = ொయାொభିଶெ೏
ொయିொభ

 

 where, ܳଵ = ݈ + ௖
௙
ቀே
ସ
−݉ቁe,   

 ܳଷ = ݈ + ௖
௙
ቀଷே
ସ
−݉ቁ  

(F8)Co-eff of kurtosis  βସ = ஜర
ஜమమ

 

where l is the lower limit of the median class, 
 f is the frequency of the median class, 
 h is the magnitude of the median class, 
 ‘c’is the c.f of the class preceding the median 
class, and N=∑f. 

f1 is the frequency of the modal class, 

fo and f2 are the frequencies of the classes 
preceding and succeeding the modal class respectively. 
 σ is the standard deviation of the distribution.
 Q1 is the first Quartile of the Distribution Q3 
is the first Quartile of the Distribution 

The average gray values of pixels in the 
cropped images are calculated and tabulated. In this 
work, 80 welded image samples are taken into account 
for classification process. Table 1 shows the average 
gray values of 80 samples.  

6. BPN Classifier  
An Artificial Neural Network (ANN) is an 

information processing paradigm that is inspired by the 
biological nervous systems, such as the brain process 
information. ANN has been successfully employed in 
similar applications to perform the classification. After 
feature selection, a back propagation neural network 
(BPN) is employed to perform the classification [14]. 
Block diagram of the back propagation neural net work 
is shown in Fig .7 

 

 

 

 

Table 1.1: The Average Gray Values of 80 Samples 
of Single zone Image (2D Feature Vector) 
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1 128.1032 

N
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41 68.25344 

Ex
ce

ss
  w

el
d 

 

2 127.89 42 67.12 

3 126.89 43 67.21 
4 127.45 44 66.13 
5 126.45 45 68.64 
6 127.59 46 68.78 
7 126.59 47 68.87 
8 127.48 48 69.12 
9 126.48 49 69.21 
10 125.89 50 68.46 
11 129.56 51 66.31 
12 128.29 52 67.49 
13 128.489 53 67.94 
14 127.489 54 67.28 
15 126.47 55 66.54 
16 127.69 56 67.82 
17 128.95 57 66.45 
18 129.12 58 66.51 
19 128.7 59 66.15 
20 128.12 60 67.19 
21 51.74025 

In
su

ff
ic

ie
nt

 
w

el
d 

61 45.92654 

G
oo

d 
 w

el
d 

 

22 50.72 62 44.12 
23 50.85 63 44.21 
24 50.236 64 44.89 
25 51.236 65 45.21 
26 50.458 66 45.12 
27 51.79 67 44.98 
28 51.47 68 45.56 
29 51.23 69 45.65 
30 51.36 70 46.28 
31 50.13 71 46.27 
32 51.456 72 46.76 
33 51.789 73 46.67 
34 51.897 74 46.94 
35 51.426 75 46.49 
36 51.624 76 46.82 
37 51.67 77 46.35 
38 50.92 78 46.53 
39 51.76 79 47.94 
40 50.29 80 47.58 
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Table 1.2: The Average Gray Values of 80 Samples of Single Zone Image (Gaussian distribution based features) 
 

Sample 
No Single zone Type of 

weld 

 F1 F2 F3 F4 F5 F6 F7 F8  
1 91.80 52.78 57.50 90.00 79.58 0.03 0.05 2.51 

No  weld 
 

2 91.50 52.71 56.50 89.00 79.48 0.03 0.04 2.52 
3 91.40 52.76 56.76 89.50 79.68 0.025 0.03 2.53 
4 91.26 52.58 56.98 88.45 78.99 0.027 0.06 2.51 
5 91.75 53.78 56.76 89.63 79.14 0.028 0.07 2.56 
6 92.00 54.78 56.50 89.47 78.36 0.027 0.04 2.54 
7 92.50 51.78 56.78 88.94 79.86 0.024 0.07 2.51 
8 92.23 52.30 57.24 91.00 79.24 0.023 0.06 2.53 
9 92.45 52.75 57.80 91.25 79.77 0.024 0.04 2.45 
10 92.78 52.46 57.23 91.50 79.79 0.023 0.05 2.47 
11 91.80 52.78 57.50 90.00 79.89 0.026 0.06 2.48 
12 91.50 52.71 56.50 89.00 77.98 0.028 0.07 2.49 
13 91.40 52.78 56.76 89.50 79.48 0.029 0.05 2.46 
14 91.26 52.58 56.78 88.45 79.35 0.026 0.06 2.41 
15 91.75 53.78 56.76 89.63 79.87 0.022 0.05 2.55 
16 92.00 54.78 56.50 89.47 79.68 0.021 0.06 2.65 
17 92.50 51.78 56.78 88.94 78.98 0.027 0.07 2.66 
18 92.50 52.30 57.24 91.00 79.31 0.028 0.05 2.68 
19 92.45 52.75 57.80 91.25 79.11 0.024 0.06 2.56 
20 92.78 52.46 57.23 91.50 78.37 0.028 0.07 2.45 

Sample 
No  

       Type of 
weld 

21 94.14 47.11 50.04 91.50 98.18 0.06 0.13 2.27 

Insufficient 
weld 

22 95.14 46.11 51.14 92.50 98.82 0.05 0.32 2.77 
23 94.24 46.21 50.23 90.50 98.38 0.06 0.14 2.48 
24 94.34 47.21 50.07 93.50 99.18 0.05 0.14 2.38 
25 94.44 46.31 50.98 91.20 97.18 0.06 0.15 2.47 
26 95.14 47.41 49.98 91.80 97.82 0.05 0.15 2.57 
27 93.14 47.81 51.02 91.80 97.92 0.06 0.19 2.29 
28 95.00 46.11 48.99 91.90 98.82 0.06 0.20 2.30 
29 94.15 45.91 50.54 91.70 99.48 0.09 0.12 2.37 
30 94.90 47.11 50.23 90.40 98.23 0.05 0.12 2.48 
31 94.14 47.11 50.07 91.50 98.18 0.06 0.13 2.38 
32 95.14 46.11 50.98 92.50 98.82 0.06 0.32 2.47 
33 94.24 46.21 49.98 90.50 98.38 0.05 0.15 2.57 
34 95.00 47.21 51.02 93.50 99.18 0.09 0.15 2.29 
35 94.44 46.31 48.99 91.20 97.82 0.06 0.19 2.30 
36 95.14 47.41 50.54 91.60 97.82 0.05 0.20 2.37 
37 93.14 47.81 51.25 91.80 97.92 0.06 0.12 2.29 
38 95.00 46.11 51.30 91.90 98.82 0.06 0.12 2.30 
39 93.14 45.91 51.32 91.70 99.48 0.09 0.13 2.37 
40 94.44 47.81 51.02 90.40 98.23 0.09 0.32 2.47 

Sample 
No Single zone Type of 

weld 
41 103.14 47.58 46.13 109.20 117.00 -0.13 -0.11 4.63 Excess  
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42 102.14 46.58 46.35 110.20 116.00 -0.17 -0.17 4.31 weld 
 43 102.24 46.68 46.46 111.00 115.00 -0.13 -0.11 4.83 

44 103.64 46.88 45.13 109.00 118.00 -0.12 -0.10 4.66 
45 103.44 45.58 45.43 109.70 119.00 -0.16 -0.07 4.53 
46 102.54 45.83 45.93 109.70 118.00 -0.16 -0.20 4.73 
47 103.54 45.58 45.85 108.80 118.00 -0.14 -0.19 4.66 
48 103.64 46.33 47.13 108.50 114.00 -0.16 -0.17 5.13 
49 104.14 47.78 46.15 109.50 119.00 -0.20 -0.11 5.23 
50 103.74 47.93 47.35 110.00 117.50 -0.19 -0.14 5.43 
51 103.14 47.58 46.13 109.20 117.00 -0.13 -0.11 4.63 
52 102.14 46.68 46.35 110.20 116.00 -0.17 -0.17 4.31 
53 102.24 46.68 46.46 111.00 115.00 -0.13 -0.11 4.83 
54 104.14 46.88 45.13 109.00 118.00 -0.12 -0.10 4.66 
55 103.44 45.58 45.43 109.80 119.00 -0.16 -0.07 4.53 
56 102.54 45.83 45.93 109.70 116.00 -0.16 -0.20 4.73 
57 103.54 46.53 47.13 108.80 118.00 -0.14 -0.19 4.68 
58 103.64 46.33 47.13 108.50 114.00 -0.16 -0.17 5.13 
59 104.14 47.78 47.35 110.00 119.00 -0.20 -0.11 5.23 
60 103.74 47.93 47.35 110.00 117.50 -0.19 -0.14 5.43 

Sample 
No  

       Type of 
weld 

61 92.34 51.32 55.58 104.40 100.80 -0.23 -0.32 2.48 

 
 
 
 
 

Good 
weld 

62 91.30 50.32 54.58 103.57 100.50 -0.29 -0.38 2.78 
63 94.20 51.42 55.68 104.11 100.90 -0.22 -0.31 2.82 
64 93.40 50.56 55.98 104.42 99.65 -0.30 -0.33 2.62 
65 92.60 51.12 53.98 104.17 100.01 -0.23 -0.34 2.47 
66 91.70 51.25 52.98 103.94 100.90 -0.25 -0.34 2.48 
67 91.80 50.58 54.76 104.14 100.30 -0.30 -0.30 2.18 
68 92.42 51.33 55.58 103.40 100.50 -0.28 -0.35 2.28 
69 92.56 50.63 55.58 104.97 100.19 -0.25 -0.38 2.38 
70 92.54 51.62 55.56 103.12 99.97 -0.24 -0.37 2.46 
71 92.34 51.32 55.58 104.40 100.21 -0.23 -0.32 2.48 
72 92.54 50.32 54.58 103.57 100.90 -0.29 -0.38 2.78 
73 94.20 51.42 55.68 104.11 100.30 -0.22 -0.31 2.82 
74 93.40 50.56 55.98 104.42 100.30 -0.30 -0.33 2.82 
75 92.60 51.12 55.56 104.17 100.50 -0.23 -0.30 2.47 
76 91.70 51.25 52.98 103.94 100.19 -0.25 -0.34 2.48 
77 91.80 50.58 54.76 104.14 99.97 -0.30 -0.30 2.18 
78 92.42 51.33 55.58 103.40 100.21 -0.28 -0.35 2.28 
79 92.56 50.63 55.58 104.42 100.90 -0.25 -0.38 2.38 
80 92.54 51.62 55.56 103.12 100.30 -0.24 -0.37 2.46 
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Table 2.1:  Inputs and Outputs of the Training Samples (2D feature vector) 

Sample 
No Input Output Type of weld Sample No Input Output Type of weld 

1 0.988756 1  
 
 
 
 
 
 
 
 
 

No  weld 
 

41 0.986179 0.5  
 
 
 
 
 
 
 
 
Excess  weld 

 

2 0.98711 1 42 0.969802 0.5 
3 0.979392 1 43 0.971102 0.5 
4 0.983714 1 44 0.955498 0.5 
5 0.975996 1 45 0.991764 0.5 
6 0.984795 1 46 0.993787 0.5 
7 0.977076 1 47 0.995087 0.5 
8 0.983946 1 48 0.9987 0.5 
9 0.976227 1 49 1 0.5 
10 0.971673 1 50 0.989163 0.5 
11 1 1 51 0.958099 0.5 
12 0.990198 1 52 0.975148 0.5 
13 0.991734 1 53 0.98165 0.5 
14 0.984015 1 54 0.972114 0.5 
15 0.97615 1 55 0.961422 0.5 
16 0.985567 1 56 0.979916 0.5 
17 0.995292 1 57 0.960121 0.5 
18 0.996604 1 58 0.960988 0.5 
19 0.993362 1 59 0.955787 0.5 
20 0.988885 0.75 60 0.970813 0.5 

Sample 
No Input Output Type of weld Sample No Input Output Type of weld 

21 0.99698 0.75  
 
 
 
 
 
 
 
 

Insufficient 
weld 

61 0.958 0.25  
 
 
 
 
 
 
 
 
Good  weld 

 

22 0.97732 0.75 62 0.920317 0.25 
23 0.979825 0.75 63 0.922194 0.25 
24 0.967994 0.75 64 0.936379 0.25 
25 0.987263 0.75 65 0.943054 0.25 
26 0.972272 0.75 66 0.941176 0.25 
27 0.997938 0.75 67 0.938256 0.25 
28 0.991772 0.75 68 0.950355 0.25 
29 0.987148 0.75 69 0.952232 0.25 
30 0.989653 0.75 70 0.965373 0.25 
31 0.965952 0.75 71 0.965165 0.25 
32 0.991502 0.75 72 0.975386 0.25 
33 0.997919 0.75 73 0.973509 0.25 
34 1 0.75 74 0.979141 0.25 
35 0.990924 0.75 75 0.969754 0.25 
36 0.99474 0.75 76 0.976637 0.25 
37 0.995626 0.75 77 0.966834 0.25 
38 0.981174 0.75 78 0.970588 0.25 
39 0.99736 0.75 79 1 0.25 
40 0.969035 0.75 80 0.992491 0.25 

Table 2.2:  Inputs and Outputs of the Training Samples (Gaussian Distribution Based Features) 

Sa
m

pl
e 

N
o 

Single zone  

O
ut

pu
t 

T
yp

e 
of

 w
el

d 

1 0.9894374 0.96349032 0.994809689 0.98360656 0.996119665 0.03 0.05 0.93656716 1 

No  weld 
 

2 0.9862039 0.96221249 0.977508651 0.9726776 0.994867943 0.03 0.04 0.94029851 1 
3 0.9851261 0.96312523 0.98200692 0.97814208 0.997371386 0.025 0.03 0.94402985 1 
4 0.9836172 0.95983936 0.985813149 0.96666667 0.98873451 0.027 0.06 0.93656716 1 
5 0.9888985 0.98174516 0.98200692 0.97956284 0.990612092 0.028 0.07 0.95522388 1 
6 0.991593 1 0.977508651 0.97781421 0.980848667 0.027 0.04 0.94776119 1 
7 0.9969821 0.94523549 0.982352941 0.97202186 0.999624484 0.024 0.07 0.93656716 1 
8 0.994072 0.954728 0.990311419 0.99453552 0.991863813 0.023 0.06 0.94402985 1 
9 0.9964432 0.96294268 1 0.99726776 0.998497935 0.024 0.04 0.9141791 1 
10 1 0.95764878 0.990138408 1 0.998748279 0.023 0.05 0.92164179 1 
11 0.9894374 0.96349032 0.994809689 0.98360656 1 0.026 0.06 0.92537313 1 
12 0.9862039 0.96221249 0.977508651 0.9726776 0.976092127 0.028 0.07 0.92910448 1 
13 0.9851261 0.96349032 0.98200692 0.97814208 0.994867943 0.029 0.05 0.91791045 1 
14 0.9836172 0.95983936 0.982352941 0.96666667 0.993240706 0.026 0.06 0.89925373 1 
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15 0.9888985 0.98174516 0.98200692 0.97956284 0.999749656 0.022 0.05 0.95149254 1 
16 0.991593 1 0.977508651 0.97781421 0.997371386 0.021 0.06 0.98880597 1 
17 0.9969821 0.94523549 0.982352941 0.97202186 0.988609338 0.027 0.07 0.99253731 1 
18 0.9969821 0.954728 0.990311419 0.99453552 0.992740018 0.028 0.05 1 1 
19 0.9964432 0.96294268 1 0.99726776 0.990236575 0.024 0.06 0.95522388 1 
20 1 0.95764878 0.990138408 1 0.980973839 0.028 0.07 0.9141791 1 
21 91.169077 0.9894892 0.98535871 0.975058457 0.97860963 1.070665213 0.06 0.13 0.75 

Insufficient 
weld  

22 90.928026 1 0.96444259 0.996492595 0.98930481 1.077644493 0.05 0.32 0.75 
23 82.542881 0.9905403 0.9665342 0.978760717 0.96791444 1.072846238 0.06 0.14 0.75 
24 82.077996 0.9915913 0.98745032 0.975643024 1 1.081570338 0.05 0.14 0.75 
25 80.924393 0.9926424 0.96862581 0.993374903 0.97540107 1.059760087 0.06 0.15 0.75 
26 77.859597 1 0.99163355 0.973889322 0.98181818 1.066739368 0.05 0.15 0.75 
27 80.61447 0.9789783 1 0.994154326 0.98181818 1.06782988 0.06 0.19 0.75 
28 76.120583 0.9985285 0.96444259 0.954598597 0.9828877 1.077644493 0.06 0.2 0.75 
29 78.841021 0.9895943 0.96025936 0.984801247 0.98074866 1.084841876 0.09 0.12 0.75 
30 101.36211 0.9974774 0.98535871 0.978760717 0.96684492 1.071210469 0.05 0.12 0.75 
31 100.65617 0.9894892 0.98535871 0.975643024 0.97860963 1.070665213 0.06 0.13 0.75 
32 100.65617 1 0.96444259 0.993374903 0.98930481 1.077644493 0.06 0.32 0.75 
33 109.90221 0.9905403 0.9665342 0.973889322 0.96791444 1.072846238 0.05 0.15 0.75 
34 107.23343 0.9985285 0.98745032 0.994154326 1 1.081570338 0.09 0.15 0.75 
35 105.52885 0.9926424 0.96862581 0.954598597 0.97540107 1.066739368 0.06 0.19 0.75 
36 100.05354 1 0.99163355 0.984801247 0.97967914 1.066739368 0.05 0.2 0.75 
37 99.089337 0.9789783 1 0.998636009 0.98181818 1.06782988 0.06 0.12 0.75 
38 99.244298 0.9985285 0.96444259 0.999610288 0.9828877 1.077644493 0.06 0.12 0.75 
39 93.855078 0.9789783 0.96025936 1 0.98074866 1.084841876 0.09 0.13 0.75 
40 94.474925 0.9926424 1 0.994154326 0.96684492 1.071210469 0.09 0.32 0.75 

Sa
m

pl
e 

N
o 

Single zone 

O
ut

pu
t 

T
yp

e 
of

 w
el

d 

41 0.9903975 0.99269768 0.974234424 0.98378378 0.983193277 -0.13 -0.11 0.85267035 0.5 

 
 
 
 
 
Excess  weld 

 

42 0.9807951 0.97183392 0.978880676 0.99279279 0.974789916 -0.17 -0.17 0.79373849 0.5 
43 0.9817553 0.9739203 0.981203801 1 0.966386555 -0.13 -0.11 0.88950276 0.5 
44 0.9951988 0.97809305 0.9531151 0.98198198 0.991596639 -0.12 -0.1 0.85819521 0.5 
45 0.9932783 0.95097016 0.959450898 0.98828829 1 -0.16 -0.07 0.83425414 0.5 
46 0.9846361 0.9561861 0.97001056 0.98828829 0.991596639 -0.16 -0.2 0.87108656 0.5 
47 0.9942385 0.95097016 0.968321014 0.98018018 0.991596639 -0.14 -0.19 0.85819521 0.5 
48 0.9951988 0.96661798 0.995353749 0.97747748 0.957983193 -0.16 -0.17 0.94475138 0.5 
49 1 0.99687044 0.974656811 0.98648649 1 -0.2 -0.11 0.96316759 0.5 
50 0.996159 1 1 0.99099099 0.987394958 -0.19 -0.14 1 0.5 
51 0.9903975 0.99269768 0.974234424 0.98378378 0.983193277 -0.13 -0.11 0.85267035 0.5 
52 0.9807951 0.9739203 0.978880676 0.99279279 0.974789916 -0.17 -0.17 0.79373849 0.5 
53 0.9817553 0.9739203 0.981203801 1 0.966386555 -0.13 -0.11 0.88950276 0.5 
54 1 0.97809305 0.9531151 0.98198198 0.991596639 -0.12 -0.1 0.85819521 0.5 
55 0.9932783 0.95097016 0.959450898 0.98918919 1 -0.16 -0.07 0.83425414 0.5 
56 0.9846361 0.9561861 0.97001056 0.98828829 0.974789916 -0.16 -0.2 0.87108656 0.5 

57 0.9942385 0.97079074 0.995353749 0.98018018 0.991596639 -0.14 -0.19 0.86187845 0.5 

58 0.9951988 0.96661798 0.995353749 0.97747748 0.957983193 -0.16 -0.17 0.94475138 0.5 

59 
1 0.99687044 1 0.99099099 1 -0.2 -0.11 0.96316759 0.5 

60 0.996159 1 1 0.99099099 0.987394958 -0.19 -0.14 1 0.5 
61 0.9802548 0.9941883 0.992854591 0.96027436 0.99900892 -0.23 -0.32 0.87943262 0.25  

 
 
 
 
 

62 0.9692144 0.97481596 0.974991068 0.9574164 0.996035679 -0.29 -0.38 0.9858156 0.25 
63 1 0.99612553 0.994640943 0.96122702 1 -0.22 -0.31 1 0.25 
64 0.9915074 0.97946532 1 0.94931885 0.987611497 -0.3 -0.33 0.92907801 0.25 
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65 0.9830149 0.99031383 0.964272955 0.9527484 0.991179386 -0.23 -0.34 0.87588652 0.25 
 
 
 
 

Good 
weld  

66 0.9734607 0.99283224 0.946409432 0.96122702 1 -0.25 -0.34 0.87943262 0.25 
67 0.9745223 0.97985277 0.978206502 0.9555111 0.994053518 -0.3 -0.3 0.77304965 0.25 
68 0.981104 0.99438202 0.992854591 0.9574164 0.996035679 -0.28 -0.35 0.80851064 0.25 
69 0.9825902 0.98082139 0.992854591 0.95446318 0.99296333 -0.25 -0.38 0.84397163 0.25 
70 0.9823779 1 0.99249732 0.95236734 0.990782953 -0.24 -0.37 0.87234043 0.25 
71 0.9802548 0.9941883 0.992854591 0.95465371 0.993161546 -0.23 -0.32 0.87943262 0.25 
72 0.9823779 0.97481596 0.974991068 0.96122702 1 -0.29 -0.38 0.9858156 0.25 
73 1 0.99612553 0.994640943 0.9555111 0.994053518 -0.22 -0.31 1 0.25 
74 0.9915074 0.97946532 1 0.9555111 0.994053518 -0.3 -0.33 1 0.25 
75 0.9830149 0.99031383 0.99249732 0.9574164 0.996035679 -0.23 -0.3 0.87588652 0.25 
76 0.9734607 0.99283224 0.946409432 0.95446318 0.99296333 -0.25 -0.34 0.87943262 0.25 
77 0.9745223 0.97985277 0.978206502 0.95236734 0.990782953 -0.3 -0.3 0.77304965 0.25 
78 0.981104 0.99438202 0.992854591 0.95465371 0.993161546 -0.28 -0.35 0.80851064 0.25 
79 0.9825902 0.98082139 0.992854591 0.96122702 1 -0.25 -0.38 0.84397163 0.25 
80 0.9823779 1 0.99249732 0.9555111 0.994053518 -0.24 -0.37 0.87234043 0.25 

 

 

Fig. 7 Block Diagram of Back Propagation Neural 
Network 

The back propagation algorithm minimizes the 
squares of the differences between actual output and 
desired output unit for all training pairs. The error 
obtained when training pair consisting of both input and 
output given to the input layer of the network, is given 
by equation 

 Ep= 1
2
∑ (Tpi-i Opi)2                           (2.1) 

Where, 
 
Tpi is the i th component of the desired output. 

Oi is the calculated output of  i th neuron in the 
output layer. 
The overall error of all the patterns is given by, 

E = ∑Ep    (2.2) 

To obtain a gradient descent in E, the weight W has to 
be updated  

W୧୨ =η∂pj pj   (2.3) 
Where, 
  is a constant real number called learning rate, 
which determines the influence of error over weight 
change. 
 pj   is the error due to the P th pattern 
connected to J th neuron. 

pj is the i th neuron output, when P th  is 
processed by the network. 

In the gradient descent equation (2.3), the error 

value pj can be computed as follows   
  ) ( )    (2.4) 
For hidden layers, 

           (2.5) 
In this work, BPN classifier is used to classify 

the weld joints. The back propagation algorithm was 
used to train the network. The network was trained by 
using average gray values for four zones of images as 
input variables and types of weld joint as output 
variable. 

In order to improve the performance of the 
system, normalizing the data is important. It can make 
the neural network training more efficient due to a 
significant reduction of the dimensionality of the input 
data.Normalization is done as follows. 
                       (2.6) 

Where    - average gray scale value of zone1 image. 
 – Maximum gray scale value of all zone 

images. 
 

Table.2 shows the inputs and outputs of the 
training samples 
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 The features like average gray values of four 
zones for four types of weld joints are the 
inputs given to the input layer of ANN. 

 The weights between input layer & hidden 
layer and weights between hidden layer and 
output layer are generated randomly for the 
selected topology 4-5-5-1 of the network. 

 The number of training patterns used for 
training is 80. 

 The patterns were normalized. 
 The training was done off-line using the 

computer. 
The training function TRAINLM is used in this 

network. The application of Leven berg-Marquardt to 
neural network training is the fastest method for training 
moderate – sized feed forward neural network. In many 
cases, Trainlm is able to obtain lower mean square 
errors than any of the other algorithms tested. Number 
of iterations in this work is 5000, learning rate is 0.0001, 
hyperbolic tangent function is an activation function and 
three layered feed forward BPN is used. 

7. Results and discussions 
     In this work, the 80 weld joint samples are 

used for training and testing respectively. In each set, 20 
images are used for each type, giving a total of 80 
images for one good and three defect types training. For 
testing of sample, 80 images are used in the BPN 
network. The training data fed into the neural network 
are average gray values of four images for four zones as 
input variables and type of weld joint as output variable. 
Table.3 shows the training and test data of the four types 
of weld like Good, Excess insufficient and no weld. 

Table.3. Training and test data of the four types of 
weld 

S.No Type of weld Training data Test data 

1 Good 20 20 

2 Excess weld 20 20 

3 Insufficient weld 20 20 

4 No-Weld 20 20 

 Total  80 80 

 
Network with different topologies have been 

tried. It is found that 4-5-5-1 architecture offers the 
accurate prediction than any other network structure. 
The average training error depends upon the iteration 
number. The performance of the trained BPN can be 
reiterated by using set of unseen pattern is known as 
testing or validation. The second group of data obtained 

is used for validation. Accuracy of the BPN is 
determined by means of recognition rate. The 
recognition rate is mostly depending on the number of 
hidden neurons and learning rate used in the network. 
The recognition rate is defined as follows. 

 

 
 
The network was trained at 0.0001 allowable 

errors, it can be seen that the error coverage was 
7.8222e-005. The performance of the proposed classifier 
has been evaluated in terms of recognition rate and 
execution time. The classification performance of 
individual defect type is shown in Table 4.  

Table 4.1: Classification Performance of Different 
Types of Welding Images (2D feature vector)    

S.No Class Number Result 

   Correct  Incorrect  Correct 
(%) 

Incorrect 
(%) 

1 Good weld 20 19 1 95 5 
2 Excess 

weld 
20 18 2 90 10 

3 Insufficient 
weld 

20 18 2 90 10 

4 No-weld 20 18 2 90 10 

 Total  80 73 7 91.25 8.75 

Table 4.2: Classification Performance of Different 
Types of Welding Images (Gaussian Distribution 

based Features) 

S.No Class Number Result 

   Correct  Incorrect  Correct 
(%) 

Incorrect 
(%) 

1 Good weld 20 19 1 95 5 

2 Excess 
weld 

20 19 1 95 5 

3 Insufficient 
weld 

20 18 2 90 10 

4 No-weld 20 18 2 90 10 
 Total  80 74 6 92.5 7.5 

 
For individual comparison, it was found that 

the accuracy varies with the type of defect. The highest 
accuracy is 95% for Good,Excess weld and the lowest is 
for Insufficient, No-weld (90%). The overall accuracy is 
92.5%. As a matter of fact, 2D feature shows a 
significant difference in comparison test. Performance 
of BPN network using 80 samples is shown in Fig.8. 
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Fig.8.1 Classification Performance of BPN Network 
using 80 Samples(2D feature vector) 

 

Fig. 8.2 Classification performance of BPN Network 
using 80 Samples (Gaussian Distribution based 

Features) 

8. Conclusion 
This paper has described a method for 

automatic inspection for welded joints using  2D feature 
extraction and Gaussian based feature . Performance of 
vision system using 2D feature extraction is 91.25 %. 
But in the performance using Gaussian based feature is 
92.5 %. Table 5 & Fig.9 show the comparison of 
performance level of vision system using these two 
types of feature extractions. It can be used in computer 
aided inspection of welding defects in manufacturing 
systems. This vision based inspection system could be 
further used for classification of images with different 
joints in welding process.  

 

 

 

Table 5: Comparison of Different Types of Feature 
Extraction 

S.No Feature extraction over all accuracy 

1. 2D Feature vector 91.25% 

2. Gaussian Feature 92.5% 

 
 
 

 

 
 
 

 
 
 
 
 
 

Fig. 9 Comparison Chart for Different Types of 
Feature Extraction with Overall Accuracy 
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