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ABSTRACT 
The paper describes the multi-objective optimization of hole sinking electro discharge 

micromachining (HS-EDMM) process considering material removal rate (MRR), tool wear rate 
(TWR), hole taper (Ta) and machined hole overcut (MHO) as objectives simultaneously. Optimal 
combination of process parameters is determined using grey relational analysis that employs grey 
relational grade as performance indexes. The principal component analysis is applied to evaluate the 
weighting values corresponding to each performance characteristics so that their relative importance 
can be properly and objectively described. Optimal combination of the process parameters for the 
multi-performance characteristics of the hole sinking micro electro discharge machining has been 
found as gap voltage 90V, capacitance of capacitor 10nF 
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1. Introduction 

The demand of micro feature, components and 
products has been increasing in the industries like 
electronics/ medical/ automotive, and biotechnology etc. 
To meet the above mentioned demands, development of 
micro manufacturing processes is needed.  In this 
respect it is required to modify the existing macro 
manufacturing processes to perform micro 
manufacturing operations. For this modification, the 
processing energy, holding technology, control 
technology, dimension & quality measuring technology, 
and assembly technology has to be changed in entirely 
different manner. Micromachining is a type of 
micromanufacturing process used to create a micro 
feature of size few to hundreds of micron by selective 
controlled removal of excess material. Based on the 
mechanism of material removal rate, micro machining 
processes are classified as micro electro discharge 
machining (EDMM), micro ultrasonic machining 
(USMM), micro beam machining processes (BMMPs), 
micro jet machining processes (JMMPs), and micro 
chemical machining processes (CMMPs). 
 Electro Discharge Micromachining (EDMM) is 
a micromachining process used to produce micro feature 
by controlled melting and vaporization of excess 
material from difficult to machine, electrically 
conductive material with stringent design requirements 
using thermal energy generated by spark between two 

electrodes completely dipped in dielectric and applying 
a pulsating voltage between them. EDMM is an 
extension of electric discharge machining (EDM) in 
which feature size generated is of the order of microns. 
It is one of the most wide spread application of micro 
machining used for fabricating complex micro-
components and parts, micro-tools and micro structures. 
The EDMM method can be effectively used for high 
precision machining operation such as non-contact 
machining, 3D machining and also in various other 
applications. The machine setup has a servo control 
system with the highest sensitivity and positional 
accuracy of ±0.05µm along with the inter electrode gap 
of 1-5 µm. The power supply used in EDMM is 
relaxation or transistor type pulse generator with MHz 
of pulsating frequency [1]. The efficiency of this 
process is high as the low specific energy of material 
removal at low discharge level. 
 Hole sinking-EDMM process is used to create 
symmetrical features of relatively large depth to 
diameter ratio. The other configurations of EDMM are 
Die Sinking-EDMM, Hole drilling-EDMM, Pocket 
Milling- EDMM, Wire-EDMM, and grinding EDMM. 
The micro holes produced by this process are required 
for many industrial applications such as manufacturing 
of fluidic filters, grid and biomedical filters, injection 
nozzles, starting hole for wire EDM. 
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2. Literature Review 
Higher accuracy and miniaturization have 

always been the goals for the development of EDMM 
machines. Wong et. al [2] developed a single-spark 
generator to study the erosion characteristics from the 
micro crater size due to micro-EDM. Their experimental 
results suggest that volume and size of the micro craters 
are found to be more consistent at lower-energy 
discharges than at higher-energy discharges.  An optical 
sensor has been developed by Lin and 

Ho [3] to measure and control the dimension of 
the thin electrode during the tool fabrication process. 
They observe that the rotating electrode shows the best 
performance in the high-aspect ratio tool-electrode 
fabrication and machining depth is inversely 
proportional to the feed rate. A 3-axis local actuator 
module for µ- EDM has been developed by Imai et.al 
[4]. This module has 200 Hz bandwidth and utilizes the 
electromagnetic force for the holding and positioning of 
the electrode. A 60 µm diameter micro-hole with aspect 
ratio over 16 is machined by this module.  

Sona et. al [5] investigated the influences of 
electrical pulse condition on the machining properties in 
micro-EDM, they found that the voltage and current are 
proportional to the material removal rate, while current 
is only proportional in the case of tool wear rate. Also 
shorter pulse on duration is profitable to make accurate 
machining with a higher removal rate and a lower tool 
wear rate. Uhlmann et. al [6] studies the process 
behavior of boron doped CVD-diamond and 
polycrystalline diamond in micro-EDM well as 
influences of electrode materials on tool electrode wear 
and surface formation processes. Johan et. al [7] studied 
the effect of different tool electrode materials (W, AgW, 
CuW) on workpiece material (WC) for material removal 
rate (MRR) and tool wear rate (TWR). It was observed 
that the AgW electrode produces smoother and defect-
free nano surface among the three electrodes. Besides, a 
minimum amount of material migrates from the AgW 
electrode to the WC workpiece during the finishing 
micro-EDM. CuW electrode achieved highest MRR 
while W electrode have lowest tool wear among all 
electrodes. 
 Lin and Lin used orthogonal array combined 
with GRA for the optimization of die sinking electrical 
discharge machining of SKD11 alloy steel workpiece 
using pure copper tool electrode of diameter 8 mm with 
multi performance characteristics. Their optimization 
results show that MRR, surface roughness and electrode 
wear improved significantly [8]. A technique for 
optimization of abrasive mixed electrical discharge 
machining process with multiple performance 
characteristics based on orthogonal array with grey 

relational analysis has been proposed by Kumar et al. 
[9]. Their experimental results for optimal settings show 
that the abrasive concentration has stronger effect on 
MRR and on average surface finish than peak current, 
pulse on time and duty factor. These researchers 
computed grey relational grade by averaging the grey 
relational coefficient corresponding to each performance 
characteristics. Since the importance of each quality 
characteristic is different therefore in the present paper 
the grey relational grade is computed by using weight 
values corresponding to each quality characteristics 
using principal component analysis. 
 Some researchers [10-11] employed both TM 
and PCA in various engineering applications and found 
that it is a relatively practical and effective procedure 
for dealing with multi response problems. Antony 
applied PCA approach for multi-objective optimization 
(MOO) of submerged arc welding process. He found 
that maximum deposition rate and minimum dilution 
provide the optimum quality [12]. Ming and Wang have 
reported that the use of the orthogonal array based on 
experiments coupled with PCA is a simple, effective 
and efficient way to develop a robust, high efficiency, 
high quality electron beam machining process [13]. 
Other researchers [14-15] have reported that the use of 
GRA coupled with PCA is an effective methodology for 
optimization of different machining processes. 
 In this paper, MOO of HS-EDMM process has 
been done using GRA coupled with PCA approach. 
Experiments have been performed for micro drilling of 
0.5 mm through hole in an Invar-36 sheet using HS-
EDMM process as per L18 orthogonal array. During 
experimentation the input parameter taken are gap 
voltage and capacitance of capacitor and output 
parameter as MRR, TWR, Ta, and MHO.  
 
3. Experimental Planning 

Hole sinking electro discharge micromachining 
(HS-EDMM) has been performed on multi process 
micro electro discharge machine (Model DT-100, 
Mikrotool Pte, Singapore) with resolution 100nm, 
accuracy ± 1µm, and having fixed level of capacitance, 
and adjustable range of both voltage and spindle speed. 
Tungsten carbide rod of 500 micron diameter is used as 
tool electrode. The micro HS-EDMM operation is 
performed on rectangular section cuboid shape 
workpiece specimens made of Invar-36 having mean 
thickness of 0.5mm, length 25 mm, and width 15 mm. 
The properties and composition workpiece of workpiece 
material is given in Table (1) and Table (2) respectively. 
The removal of debris was achieved by lateral flushing 
with dielectric (EDM oil). The depth of cut has been 
kept constant 510 micron for all experiments. After 
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preliminary investigations, two process parameters are 
selected as gap voltage and capacitance of capacitor 
because they directly affect the performance parameters 
such as MRR, TWR, Ta and MHO. Selection of the 
range of process parameter settings is made after 
performing some pilot experiments within the stable 
domain of the machining. The levels of parameters 
selected are shown in Table (3). 
 

Table 1: Properties of Invar-36 
 

Property Value (Units) 
Density 8080 ( kg/m3) 
Thermal Conductivity 10.5 ( W/m/ oK) 
Specific heat 515 ( J/kg oK) 
Melting point 1427 ( oC) 
Electrical resistivity 820 ( microhm-mm) 
Hardness 70 ( HRB) 
Tensile strength 586 ( MPa) 

 
The amount of material removed from the 

workpiece and tool electrode are measured with the help 
of citizen make micro weighing balance having least 
count of 0.0001grams. Material removal rate (MRR) 
and tool wear rate (TWR) are defined as volume of 
material removed or wear in unit time from workpiece 
and tool electrode respectively. Hence, based on their 
density the MRR and TWR are calculated as:  

 

holemaketoTimematerialworkpieceofDensity
removedmaterialworkpieceofMass

MRR
×

=

      
     (1) 

holemaketoTimematerialelectrodetoolofDensity
removedmaterialelectrodetoolofMass

TWR
×

=

     (2) 
In order to find machined hole over cut (MHO) 

and hole taper (Ta), the diameter of hole at entrance and 
exit sides was measured using optical measuring 
microscope (Model SDM-TR-MSU, Sipcon Instrument 
Industries, India) at 10x magnification.  The value of Ta 
and MHO is calculated as: 

( )
( ) ( )

thicknessWorkpiece
diameterexitholediameterentrancehole

radTa ×2
=

     (3) 
 
 
 

( ) ( )
2

diametertooldiameterentrancehole
=MHO

 
     (4) 

The values of MRR, TWR, Ta and MHO are 
calculated by using equations (1-4) based on 
experimental results. 

In the present study experiments are carried out 
using fractional factorial combinations of these factors 
and their different levels. During experiments the 
workpiece thickness is kept constant for all 
experimental run. Dielectric is also kept same for all 
experiments. As per TM an orthogonal array is selected 
based on the input parameters and their levels. 
Interaction effect has not been taken into account.  L18 
orthogonal array is selected with two input parameters 
of three levels and one parameter of six levels. To 
achieve validity and accuracy, each experiment has been 
repeated three times. The experimental layout of present 
work is shown in Table (4). 
 
4 Optimization of HS-EDMM Process 

Manufacturing industries now a days focus 
more attention on quality, cost and on time delivery due 
to fierce competition at market place. Customer want 
high quality product at reasonable price. Hence 
industries are forced to have an optimal equilibrium 
between cost and quality. Ooptimization of process 
parameters is one of the effective methods to achieve 
quality and profit without increasing cost to product. 
Multi objective optimization has become an 
increasingly important, particularly in situation where 
more than one correlated responses must be assessed 
simultaneously.  
 The Grey theory can provide a solution of a 
system in which the information is incomplete. Besides, 
it provides an efficient solution to the uncertainty, multi-
input and discrete data problem. Therefore Grey relatio- 
nal analyses are applied to determine the suitable 
response parameters. The disadvantage of GRA is that it 
takes effect of each performance parameter same but in 
real application this is not valid. In order to find the 
relative influence of each performance parameter PCA 
is used to calculate the weighting values of each 
performance parameter. Therefore, Gray Relational 
Analysis (GRA) coupled with Principal Component 
Analysis (PCA) is used to optimize performance 
parameters of HS-EDMM process. 
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Table 2: Composition of Invar-36 
 

Element Ni Mn Cr Si Al Zr Mn Ti S P Fe 

Percentage 36 0.50 0.25 0.25 0.10 0.10 0.10 0.10 0.02 0.02 Balance 

 
Table 3: Machining parameters and their levels 

 
Symbol 

Machining parameters 
Level 

 1 2 3 4 5 6 

A Gap voltage (V) 90 100 110 120 130 140 

B Capacitance (nF) 10 100 400    

 
Table 4: Experimental layout using L18 orthogonal array 

 
Exp. 

No. 

Factor level 

A        B 

MRR 

(mm3/min)*10-4 

TWR 

(mm3/min)*10-4 

Hole taper 

Ta  (degree) 

Machined  hole Overcut 

MHO (µm) 

1 1 1  2.6685 1.3049 0.5713 39.10 

2 1 2  12.7800 3.5999 0.5330 71.80 

3 1 3  40.0449 15.3727 0.7951 48.45 

4 2 1  3.3614 1.3623 1.3381 76.65 

5 2 2  15.4652 4.4653 1.0055 57.15 

6 2 3  53.6738 16.6775 1.4157 82.80 

7 3 1  4.9381 1.8081 0.4507 43.65 

8 3 2  15.9412 5.7138 2.4168 41.65 

9 3 3  65.5121 18.2508 2.3803 77.45 

10 4 1  4.9327 2.0109 1.1092 36.05 

11 4 2  27.5781 7.2626 1.3124 81.75 

12 4 3  69.6839 19.8320 1.6934 80.60 

13 5 1  6.4102 2.8019 0.5925 45.15 

14 5 2  28.0535 8.5265 3.9572 80.30 

15 5 3  71.7503 26.9535 3.0407 73.95 

16 6 1  6.8840 3.1229 1.3051 43.10 

17 6 2  30.7900 10.0851 2.0414 51.80 

18 6 3  74.3649 38.8059 1.2234 46.55 
 



Journal of Manufacturing Engineering, June, 2013, Vol. 8, Issue. 2, pp 96-104 
 

www.smeindia .org                                                                                                                                                     © SME 
 

100

4.1 Grey relational analysis 
In GRA, all information represents in terms of 

black and white. Black represents having no information 
and white represents having all information [16]. Grey 
relational analysis can be used to represent the grade of 
correlation between two sequences so that the distance 
of two factors can be measured discretely. It helps to 
compensate the shortcomings of statistical regression by 
means of conducting less number of experiments, as 
experiments are ambiguous or experimental methods do 
not allow doing the exact number of experiments [17]. 
Grey relational analysis is an effective means of 
analyzing the relationship between sequences with less 
data and can analyze many factors that can overcome 
the disadvantages of statistical method [18].  
In the grey relational analysis method, experimental data 
(MRR, TWR, Ta and MHO) are first normalized in the 
range between zero and one which is also called the 
grey relational generation Table 5. Next, the values of 
deviation sequences are to be calculated as these values 
of deviation sequences are used for further calculation 
of grey relational coefficients. The grey relational 
coefficient is calculated from the normalized 
experimental data to express the relationship between 
the desired and actual experimental data [19]. Table 6, 
lists the grey relational coefficient for each experiment. 
After obtaining the grey relational coefficient, the grey 
relational grade is defined as follows: 

( )kξw
n

γ
n

k
iki ∑

1=

1
=   ,  1=∑

1=

n

k
kw ,             (5) 

where kw  represents the normalized weighting 
value of factor k,  is the distinguishing coefficient 
which is defined in the range  1≤≤0 ξ , 50= .ξ  is 
generally used. In the grey relational analysis, the grey 
relational grade is used to show the relationship among 
the sequences. If the two sequences are identical, then 
the value of grey relational grade will be equal to 1. The 
grey relational grade also indicates the degree of 
influence that the comparability sequence could exert 
over the reference sequence. Therefore, if a particular 
comparability sequence is more important than the other 
comparability sequences to the reference sequence, then 
the grey relational grade for that comparability sequence 
and reference sequence will be higher than other grey 
relational grades [20]. In this research the corresponding 

weighting values i.e. kw  are obtained from the principal 
component analysis.   
 
 
 

Table 5: The Sequences of each Performance 
Characteristic after data Pre-Processing 

 
Exp. No. MRR TWR Ta MHO 
Reference 
sequence 

1.0000 1.0000 1.0000 1.0000 

1 0.0000 1.0000 0.9656 0.9348 
2 0.1410 0.9388 0.9765 0.2353 
3 0.5213 0.6249 0.9018 0.7348 
4 0.0097 0.9985 0.7469 0.1316 
5 0.1785 0.9157 0.8418 0.5487 
6 0.7114 0.5901 0.7248 0.0000 
7 0.0317 0.9866 1.0000 0.8374 
8 0.1851 0.8824 0.4393 0.8802 
9 0.8765 0.5481 0.4497 0.1144 
10 0.0316 0.9812 0.8122 1.0000 
11 0.3474 0.8411 0.7543 0.0225 
12 0.9347 0.5060 0.6456 0.0471 
13 0.0522 0.9601 0.9596 0.8053 
14 0.3541 0.8074 0.0000 0.0535 
15 0.9635 0.3161 0.2614 0.1893 
16 0.0588 0.9515 0.7563 0.8492 
17 0.3922 0.7659 0.5463 0.6631 
18 1.0000 0.0000 0.7796 0.7754 

 
4.2 Principal component analysis 

Principal component analysis (PCA) has been 
developed by [21]. This approach explains the structure 
of variance-covariance by the way of the linear 
combinations of each quality characteristic. The 
procedure which is adapted to calculate the weight in 
the present research is as follows [22]; first we convert 
the content of table 7 in matrix form as represented in 
equation (6), where m is the number of experiment and 
n is the number of the quality characteristic. In present 
study, x  is the grey relational coefficient of each 
quality characteristic and m = 18, n = 4. The above 
matrix is used to find the correlation coefficient. The 
array of correlation coefficient is calculated by using 
equation (7) 

 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )21

21
21

=
222

111

nx..............xx
..............
..............

nx..............xx
nx..............xx

X

mmm



   

     
 (6) 
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( ) ( )( )
( )( ) ( )( ) n......,,.........,,,l;n,.......,,,,j,

lσjσ
lx,jxCov

R
ii xx

ii
jl 4321=4321=

×
=

     (7) 

here ( ) ( )( )lx,jxCov ii is the covariance of sequences 
( )jxi and ( )lxi , ( ) ( )jσ

ix is the standard deviation of 

sequence ( )jxi , and ( )( )lσ
ix is the standard deviation of 

sequence ( )lxi . After calculating correlation coefficient 
array, eigenvectors and eigenvalues are calculated by 
using equation (8). The procedure of getting 
eigenvectors and eigenvalues from correlation 
coefficient array is as follows 

( ) 0=ikmk VΙλR     
     

 (8) 
where, kλ eigenvalues, n....,,.........,,k,nλn

k k 321==∑ 1=  [ ]Tknkkkik a...........aaaV 321= is the eigenvectors 

corresponding to the eigenvalue k . The eigenvectors 
and eigenvalues are further used to find principal 
components by using equation (9) 

( ) ik
n

i
mmk VixY = ∑

1=
    

     
 (9) 

where 1mY   is called the first principal component, 
2mY is called the second principal component and so on. 

The principal components are aligned in descending 
order with respect to variance, and therefore the first 
principal component 1mY  accounts for most variance in 
the data given in Table 8. Next step is to find percentage 
contribution or to explain variation of eigenvalues. The 
eigenvector corresponding to each eigenvalue is listed in 
Table 7. The eigenvectors corresponding to the largest 
eigenvalue are selected and the square of the eigenvalue 
vectors corresponding to the first principal component 
represents the contribution of the respective 
performance characteristic to the principal component.  

 
 
 
 
 
 
 

Table 6: The Calculated Grey Relational 
Coefficients, Grey Relational Grade and its Order 

 

Exp. 

No. 

Grey relational coefficient 
Grey 

relational 
grade 

Order 

MRR TWR Ta MHO   

1 0.3333 1.0000 0.9356 0.8846 0.7642 1 

2 0.3679 0.8910 0.9552 0.3953 0.6603 7 

3 0.5109 0.5713 0.8358 0.6534 0.6190 10 

4 0.3355 0.9970 0.6639 0.3654 0.6226 9 

5 0.3784 0.8558 0.7596 0.5256 0.6353 8 

6 0.6340 0.5495 0.6450 0.3333 0.5578 17 

7 0.3405 0.9739 1.0000 0.7546 0.7486 2 

8 0.3803 0.8096 0.4714 0.8067 0.6111 11 

9 0.8020 0.5253 0.4761 0.3609 0.5724 13 

10 0.3405 0.9637 0.7270 1.0000 0.7327 3 
11 0.4338 0.7589 0.6705 0.3384 0.5712 14 
12 0.8845 0.5030 0.5852 0.3441 0.6090 12 
13 0.3453 0.9261 0.9252 0.7198 0.7137 4 
14 0.4363 0.7219 0.3333 0.3457 0.4945 18 
15 0.9320 0.4223 0.4037 0.3815 0.5675 15 
16 0.3469 0.9116 0.6724 0.7683 0.6677 6 
17 0.4514 0.6811 0.5243 0.5974 0.5658 16 
18 1.0000 0.3333 0.6941 0.6900 0.6684 5 

 
Table 7 The Eigenvalues and Explained Variation 

for Principal Components 
 

Principal 
component 

Eigenvalue Explained 
variation (%) 

First 2.6159 65.41 

Second 0.7502 18.76 

Third 0.5666 14.17 

Fourth 0.0672 1.68 
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Table 8: The Eigenvectors for principal components 
 

Quality 
characteristic 

Eigenvectors 
First 

principal 
component 

Second  
principal 

component 

Third  
principal 

component 

Fourth 
principal 

component 
Material 

removal rate 
-0.5527 -0.4612 0.1344 0.6810 

Tool wear rate 0.5730 0.3712 -0.0600 0.7282 

Hole taper 0.4445 -0.4121 0.7918 -0.0746 

Machined hole 
overcut 

0.4106 -0.6926 -0.5927 -0.0189 

 
Table 9: The Contribution of each Individual 

Quality Characteristic for the Principal Component 
 

Quality characteristic Contribution 
Material removal rate 0.3055 
Tool wear rate 0.3283 
Hole taper 0.1976 
Machined hole overcut 0.1686 

 
4.3 Experimental results and discussion 

The contribution of material removal rate, tool 
wear rate, hole taper and machined hole overcut is 
shown in Table 9.  These contributions are indicated as 
0.3055, 0.3283, 0.1976 and 0.1686 for MRR, TWR, Ta 
and MHO respectively. Moreover, the variance 
contribution for the first principal component 
characterizing the four performance characteristics is as 
high as 65.41%. Hence, for this study, the squares of its 
corresponding eigenvectors are selected as the 
weighting values of the related performance 
characteristic, and coefficients 1w , 2w , 3w and 4w   for 
equation (5) are thereby set as 00.3055, 0.3283, 0.1976 
and 0.1686 respectively. Based on equation (5) and data 
listed in Table 6 the grey relational grades are calculated 
by using these weights of corresponding performance 
parameter and grey relational coefficients after taking 
sum of these values for each set of experiment, the 
values of grey relational grades are shown in Table 6. 
Since the grey relational grade represents the level of 
correlation between the reference sequence and the 
comparability sequence, the larger value of grey 
relational grade means that the comparability sequence 
has a stronger correlation to the reference sequence. In 
other words, regardless of category of the performance 
characteristics, a larger grey relational grade value 
corresponds to better performance Tosun et al. (2003). 
Thus, the optimization design is performed with respect 
to a single grey relational grade rather than complicated 
performance characteristics. According to performed 

experiment design, it is clearly observed from Table 6 
that the HS-EDMM parameters setting of experiment 
No. (1) has the highest grey relational grade. Thus, the 
first experiment gives the best multi performance 
characteristics among the eighteen experiments. 
 

Table 10: Response Table for the Grey Relational 
Grade 
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M
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A Gap 
voltage 

0.68
11* 

0.60
52 

0.64
40 

0.63
76 

0.59
19 

0.63
40 

0.08
93 

B Capacit
ance 

0.70
82* 

0.58
97 

0.59
90 

   0.11
85 

Average grey relation grade = 0.6323 

* Optimum level 
 

The response table has been employed to 
calculate the average grey relational grade for each HS-
EDMM parameter level. It is done by sorting the grey 
relational grades corresponding to levels of the HS-
EDMM parameter in each column of the orthogonal 
array, and taking an average on those with the same 
level. Using the same method, calculations are 
performed for each HS-EDMM parameter level and the 
response table is constructed as shown in Table 10. 
Basically, as the larger the grey relational grade is the 
better multiple-performance characteristics will be. In 
Table (10), A1 and B1 show the largest value of grey 
relational grade for factors A, and B respectively. 
Therefore, A1B1 is the condition for the optimal 
parameter combination of the HS-EDMM.  When the 
last column of performance parameters in Table 10 is 
compared with each other, it is observed that the 
difference between the maximum and minimum value 
of the grey relational grade for factor B is the largest 
one followed by factor A. This indicates that the 
capacitance of capacitors has stronger effect on the 
multi-performance characteristics followed by gap 
voltage.  Quantitative contribution of the different 
factors can be obtained by the decomposition of the 
variance, popularly known as analysis of variance 
(ANOVA). It is a computational technique used to 
estimate quantitatively the relative significance and 
contribution of each factor. In the present case the 
ANOVA given in Table 11 shows the contribution of 
different factors as gap voltage (15.92%), capacitance of 
capacitor (56.24%). 
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Table 11: Results of ANOVA for Grey Relational 

Grade 
 

Sy
m

bo
l 

Fa
ct

or
 

D
O

F 

Su
m

 o
f 

sq
ua

re
s 

M
ea

n 
sq

ua
re

s 

F 

C
on

tr
i

bu
tio

n 
(%

) 

A Gap voltage 5 0.014765 0.002953 1.14 15.92 

B Capacitance 2 0.052146 0.026073 10.1 56.24 

Error  10 0.025813 0.002581   

Total  17 0.092724    

 
5. Conclusions 

Grey relational analysis coupled with principal 
component analysis optimization strategy has been used 
to determine the optimal combination of control 
parameters in HS-EDMM of invar-36. The findings of 
the present study are as: 

Optimal combination of the process parameters 
for the multi-performance characteristics of the hole 
sinking electro discharge micromachining is A1B1. 
The percentage contributions of each individual quality 
characteristic for the principal component in increasing 
order are MHO (16.86%), Ta (19.76%), MRR (30.55%) 
and TWR (32.83%) respectively. 

It is observed that the capacitance of capacitors 
has stronger effect on the multi-performance 
characteristics followed by gap voltage. 

Quantitative contributions of the different 
factors are 15.92% of gap voltage, 56.24% of 
capacitance of capacitor. 
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