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ABSTRACT 

This paper presents the work related the development of neural network model for predicting 
surface roughness and optimization of the process parameters for minimizing surface roughness using 
Genetic Algorithm. The process parameters chosen for this study are helix angle of tool geometry, 
spindle speed, feed rate, and depth of cut, while the output parameter is surface roughness. The 
experiments were conducted based on design of experiments using fractional factorial with 125 runs. 
The material and tool selected for this study is AISI 304 Austenitic Stainless Steel (AISI 304) and 
uncoated solid carbide end mill cutter respectively. Using the experimental data, feed-forward back 
propagation neural network model was developed and it was trained using the Levenberg– Marquardt 
algorithm. It was observed that the ANN model based on network 4-12-1 predicted surface roughness 
more accurately. To ensure optimization, a mathematical model was also developed to correlate the 
process parameters with surface roughness. A source code was developed in MATLAB to carry out 
the optimization. The optimized process parameters gave a value of 0.75132 µm for surface 
roughness. 

 
Keywords: Tool Geometry, Artificial Neural Networks, Fractional Factorial, Genetic Algorithm, 
Surface Roughness and End milling. 

 
 
1. Introduction 

Austenitic stainless steels are widely used in 
cutlery, sinks, tubing, dairy, food and pharmaceutical 
equipments as well as in springs, nuts, bolts and screws 
due to their high strength and high corrosion and 
oxidation resistance. AISI 304 stainless steel finds its 
application in air craft fittings, aerospace components 
such as bushings, shafts, valves, special screws, 
cryogenic vessels and components for severe chemical 
environments. It is also being used for welded 
constructions in aerospace structural components [1]. 
Ciftci [2] investigated the machining characteristics of 
Austenitic Stainless Steels (AISI 304 and AISI 316) 
using multi layer coated carbide tools. The turning tests 
were conducted at four different cutting speeds at a 
constant feed rate and depth of cut. In manufacturing 
industries, milling is a fundamental metal-cutting 
operation and end milling is the most frequent operation 
encountered, which was employed for making profiles, 
slots, engraves, contours and pockets in various 
components. All end mills have a helix angle unless 
they are straight fluted tools. The helix angle is defined 

by angle formed by a line tangent to the helix and a 
plane through the axis of the cutter or the cutting edge 
angle which a helical cutting edge makes with a plane 
containing the axis of a cylindrical cutter. The grey–
Taguchi method was adopted to optimise the milling 
parameters of aluminium alloy and found that tool 
geometry (helix angle) contribution percentage on 
surface roughness is 12.5% [3]. In the modern times, 
industries focus a lot on attaining dimensional accuracy 
and surface roughness of products. Surface roughness is 
an important parameter that influences mechanical 
properties such as fatigue behaviour, wear, corrosion, 
lubrication and electrical conductivity. It decides how 
the work piece components interact with its assembled 
parts. Obviously, rough surface will wear more and 
have high coefficient of friction than smooth surface 
hence surface roughness is a good predictor of quality of 
product. The demands for high quality of product relay 
on surface roughness urge the industrial automation to 
focus its attention on the surface finish of the product. 
Though surface roughness is a prominent parameter, it 
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is expensive to control since the manufacturing cost will 
increase exponentially with decrease in surface 
roughness. An effective model to predict the surface 
roughness becomes essential to ensure the desired 
quality in end milling. Various studies have been made 
on the surface roughness in end milling using various 
tools, work materials and experimental methods. The 
literature survey pertaining to the work of other 
researchers is indicated here. Mathematical models to 
predict surface roughness in terms of machining 
parameters such as spindle speed, feed rate and depth of 
cut have been developed by many researchers [4-6]. 

Ginta et al. [7] employed central composite 
design of response surface methodology to develop an 
analytical model for surface roughness in terms of 
cutting parameters such as cutting speed, axial depth of 
cut and feed per tooth. Sivasakthivel et al [8] developed 
experimental evaluation of surface roughness for end 
milling of AI 6063 materials with high speed steel end 
mill cutter using response surface methodology (RSM) 
and neural network model.  Ryu et al. [9] incorporated 
the effect of cutting edge angle on surface roughness 
and texture generation on end milled steel surfaces. 
They used RSM deviation, skewness and kurtosis for 
evaluating the characteristics of generated surface 
texture. The cutting performance of the end mill was 
assessed using variance analysis. Bhattacharya et al. 
[10] used Taguchi orthogonal array and analysis of 
variance to investigate the effect of cutting speed, feed 
rate and depth of cut on surface roughness and power 
consumption in high-speed machining. Ghani et al. [11] 
used Taguchi optimization methodology to optimize 
cutting parameters in end milling when machining 
hardened steel AISI H13 with TiN coated P10 carbide 
insert tool under semi-finishing and finishing condition 
of high-speed cutting.. Brezocnik et al. [12] proposed 
genetic programming approach to predict the surface 
roughness in end milling. Chang and Lu [13] proposed 
different polynomial networks for predicting surface 
roughness using the abductive modelling technique and 
the input variables selected based on F-ratio.   

The technique of neural networks offer 
potential and an alternative to standard computer 
techniques in control technology and has attracted a 
huge interest in their development and application. The 
advantage of neural networks is that the network can be 
updated continuously with new data in order to optimize 
its performance. The network has the ability to handle a 
large number of input variables rapidly, filter noisy data 
and interpolate incomplete data [14]. A neural network 
modelling approach was presented by benardos and 
Vosniakos [15] to estimate the surface roughness in 
CNC milling process exploiting a number of 
experiments. Yang et al .[16] developed a Fuzzy-Nets-

based in-process Adaptive Surface Roughness Control 
(FN-ASRC) system to adapt cutting parameters in-
process to improve the surface roughness of machined 
parts. Lo [17] used adaptive-network-based fuzzy 
inference system to predict surface roughness in terms 
of spindle speed, feed rate and depth of cut. Jesuthanam 
et al. [18] developed a hybrid model by combining 
ANN with genetic algorithm (GA) in end milling 
operation to find the lower surface roughness. Oktem et 
al. [19] studied an effective ANN model integrated with 
GA optimization technique to determine the best 
combinations of cutting parameters that would minimize 
surface roughness in end milling of AISI 1040 steel with 
TiAIN solid carbide tools. A multilayered neural 
network was trained based on back-propagation learning 
algorithm and tested to control the performance of the 
trained ANN model. By adopting the tested ANN model 
with the powerful GA technique, optimization process 
was applied to achieve the lower surface roughness in 
terms of the best combinations of cutting parameters. 
Sureshkumar Reddy and Venkateshwara Rao [20] used 
GA to optimize tool geometry, viz., radial rake angle 
and nose radius and cutting conditions, viz., cutting 
speed and feed rate to obtain desired surface quality in 
dry end milling process of AISI 1045 steel specimens. A 
predictive model of surface roughness was created 
based on the experimentally measured values with 
cutting speed, feed rate, depth of cut and material 
removal rate and further optimised to obtain minimum 
surface roughness by neural network and genetic 
algorithm [21]. From the literature survey, the following 
can be inferred: 
1. Though many studies have focussed on studying the 
different grades of austenitic stainless steels, the use of 
304 grade stainless steel in end milling process, has not 
been studied much. 
2 Most researchers have used cutting parameters like 
speed, feed and depth of cut as input parameters. Few 
researchers studied the combined effect of tool 
geometry (helix angle) with cutting parameters to 
predict the surface roughness. From the literature survey 
the effect of helix angle to predict the surface roughness 
has not been explored in detail. 
2. A considerable amount of work has gone into 
studying the effect of process parameters on surface 
roughness, and most of them have used the regression 
models for predicting surface roughness. 
4. Also, most researchers have used either central 
composite rotatable design or Taguchi design for 
conducting the experiments, which are suitable for 
developing regression models. On the contrary, for 
developing ANN model, further test data is required. 
Hence, in this study, the experiments were conducted 
based on fractional factorial with 125 experimental runs. 
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Using the experimental data, a neural network model 
was developed with four neurons for the input layer, 12 
neurons for the hidden layer and one neuron for the 
output layer. The chosen input parameters for 
developing the networks are helix angle (α), spindle 
speed (S), Feed rate (F) and depth of cut (D) 
respectively. The chosen output parameter is that of 
surface roughness (Ra). 

The network was trained using                 
Levenberg–Marquardt algorithm. It was found that 
ANN model based on network 4-12-1 predicted surface 
roughness more accurately. Genetic algorithm (GA) has 
been chosen for optimization as it can be applied to all 
kinds of objective functions. A source code was 
developed in MATLAB 7.6 for the purpose of 
optimization and the optimal process parameters gave a 
value of 0.75132 µm for surface roughness. 

 
2. Experimental Procedure 

The experiments were designed based on 
fractional factorial with 125 experimental runs [22], and 
were conducted as per the design matrix using HAAS 
vertical milling machine. AISI 304 Austenitic Stainless 
Steel work piece using an uncoated solid carbide end 
mill cutter with a diameter of 12 mm and 4 flutes. The 
tests were conducted along a 50 mm edge and the 
machining operations were carried out as per the 
conditions stipulated by the design matrix at random to 
avoid systematic error. The machined surface was 
measured at three different positions, and the averages 
of three measurements were taken as a response value. 
Surface roughness values (Ra) were taken using a 
Mitutoya surf test SJ-201 surf tester with 2.5 mm cut-off 
value. Radial depth of cut used in this work is 2.5 mm. 
The surface roughness measurement with Mitutoya surf 
test SJ 201 surf tester is shown in Figure 1. 

 

 
 

Fig. 1 Surface Roughness Measurement with 
Mitutoyo Surftest SJ 201 Surf Tester 
 

3. Plan of Investigation 
3.1 Identification of the process variables 
 Machining conditions set by various process 
parameters influence the surface roughnesses which in 
turn affect the overall quality. The identification of 
correct process parameters is of paramount importance 
in obtaining better surface finish with minimum effort. 
Desired surface roughness may be achieved by properly 
selecting the independently controllable process 
variables or factors which influence the surface quality.
 Among the many independently controllable 
process parameters affecting surface roughness, helix 
angle of end mill cutter (α), Spindle speed (S), Feed (F) 
and depth of cut (D) are selected as factors to carry out 
the experimental works and the development of 
mathematical models. 

 
Table 1: Machining Parameters and their Levels 

 

Parameter 
Unit & 

Notation 

Levels 

-2 -1 0 1 2 

Helix angle Degree (α) 25 30 35 40 45 

Spindle 

speed 
Rpm (S) 700 1400 2100 2800 3500 

Feed rate mm/rev (F) 0.03 0.06 0.09 0.12 0.15 

Depth of cut mm (D) 0.2 0.4 0.6 0.8 1.0 

 
3.3 Development of design matrix 
 In factorial design, the experiments were 
conducted for all possible combinations of the 
parameter levels. These combinations were written in 
the form of a table where the rows correspond with 
different trials and the columns with the levels of the 
parameters. This forms a design matrix. 
 
3.4 Recording the response 

Roughness measurement was done using a 
portable stylus type profilometer, Mitutoya surf test SJ 
201. The profilometer was set to a cut-off length of 2.5 
mm, filter 2CR, traverse speed 1 mm/sec and 4 mm 
evaluation length. Roughness measurements, in the 
transverse direction, on the workpieces were repeated 
four times and average of four measurements of surface 
roughness parameter values was recorded. The 
measured profile was digitized and processed through 
the dedicated advanced surface finish analysis software 
(Mitutoyo ver 3.0) and profile is traced as shown in 
Figure 2. The design matrix and measured value of 
surface roughness are shown in Table 2. 
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Table 2: Design Matrix and Response 
 

      
S.No Machining parameters in coded values 
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01 0 0 0 0 1.555 
02 0 0 -1 2 1.539 
03 0 0 0 1 1.558 
04 0 0 1 0 1.669 
05 0 0 2 -1 1.872 
06 0 -1 0 2 1.4 
07 0 -1 -1 1 1.504 
08 0 -1 0 0 1.604 
09 0 -1 1 -1 1.796 
10 0 -1 2 0 1.94 
11 0 0 0 1 1.558 
12 0 0 -1 0 1.549 
13 0 0 0 -1 1.536 
14 0 0 1 0 1.669 
15 0 0 2 2 1.881 
16 0 1 0 0 1.43 
17 0 1 -1 -1 1.308 
18 0 1 0 0 1.43 
19 0 1 1 2 1.728 
20 0 1 2 1 1.866 
21 0 2 0 -1 1.016 
22 0 2 -1 0 1.223 
23 0 2 0 2 1.607 
24 0 2 1 1 1.54 
25 0 2 2 0 1.565 
26 -1 0 0 2 1.775 
27 -1 0 -1 1 1.782 
28 -1 0 0 0 1.785 
29 -1 0 1 -1 1.88 
30 -1 0 2 0 2.121 
31 -1 -1 0 1 1.74 
32 -1 -1 -1 0 1.828 
33 -1 -1 0 -1 1.912 
34 -1 -1 1 0 1.948 
35 -1 -1 2 2 1.966 
36 -1 0 0 0 1.785 
37 -1 0 -1 -1 1.76 
38 -1 0 0 0 1.785 
39 -1 0 1 2 1.889 
40 -1 0 2 1 2.124 
41 -1 1 0 -1 1.544 
42 -1 1 -1 0 1.654 
43 -1 1 0 2 1.844 
44 -1 1 1 1 1.874 
45 -1 1 2 0 1.996 
46 -1 2 0 0 1.459 
47 -1 2 -1 2 1.831 
48 -1 2 0 1 1.656 
49 -1 2 1 0 1.573 
50 -1 2 2 -1 1.582 
51 0 0 0 1 1.558 
52 0 0 -1 0 1.549 
53 0 0 0 -1 1.536 
54 0 0 1 0 1.669 
55 0 0 2 2 1.881 
56 0 -1 0 0 1.604 
57 0 -1 -1 -1 1.676 
58 0 -1 0 0 1.604 
59 0 -1 1 2 1.514 
60 0 -1 2 1 1.846 
61 0 0 0 -1 1.536 
62 0 0 -1 0 1.549 
63 0 0 0 2 1.545 
64 0 0 1 1 1.672 
65 0 0 2 0 1.891 
66 0 1 0 0 1.43 
67 0 1 -1 2 1.608 
68 0 1 0 1 1.53 

69 0 1 1 0 1.544 
70 0 1 2 -1 1.65 
71 0 2 0 2 1.607 
72 0 2 -1 1 1.42 
73 0 2 0 0 1.229 
74 0 2 1 -1 1.13 
75 0 2 2 0 1.565 
76 1 0 0 0 1.559 
77 1 0 -1 -1 1.534 
78 1 0 0 0 1.559 
79 1 0 1 2 1.663 
80 1 0 2 1 1.898 
81 1 -1 0 -1 1.686 
82 1 -1 -1 0 1.602 
83 1 -1 0 2 1.404 
84 1 -1 1 1 1.628 
85 1 -1 2 0 1.944 
86 1 0 0 0 1.559 
87 1 0 -1 2 1.543 
88 1 0 0 1 1.562 
89 1 0 1 0 1.673 
90 1 0 2 -1 1.876 
91 1 1 0 2 1.618 
92 1 1 -1 1 1.528 
93 1 1 0 0 1.434 
94 1 1 1 -1 1.432 
95 1 1 2 0 1.77 
96 1 2 0 1 1.43 
97 1 2 -1 0 1.227 
98 1 2 0 -1 1.02 
99 1 2 1 0 1.347 
100 1 2 2 2 1.947 
101 2 0 0 -1 1.778 
102 2 0 -1 0 1.791 
103 2 0 0 2 1.787 
104 2 0 1 1 1.914 
105 2 0 2 0 2.133 
106 2 -1 0 0 1.846 
107 2 -1 -1 2 1.636 
108 2 -1 0 1 1.752 
109 2 -1 1 0 1.96 
110 2 -1 2 -1 2.26 
111 2 0 0 2 1.787 
112 2 0 -1 1 1.794 
113 2 0 0 0 1.797 
114 2 0 1 -1 1.892 
115 2 0 2 0 2.133 
116 2 1 0 1 1.772 
117 2 1 -1 0 1.666 
118 2 1 0 -1 1.556 
119 2 1 1 0 1.786 
120 2 1 2 2 2.192 
121 2 2 0 0 1.471 
122 2 2 -1 -1 1.252 
123 2 2 0 0 1.471 
124 2 2 1 2 1.963 
125 2 2 2 0 1.555 
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Fig. 2 Measured Surface Roughness Profile for 
Specimen 1 
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4. Model Development 
 The regression procedure was used for the 

developing mathematical model to predict surface 
roughness. The response function representing surface 
roughness can be expressed as Y = f (α, S, F, D), where 
Y is the response or yield. The second-order polynomial 
representing the response surface for ‘‘k’’ factors is 
given by Eqn. (2) [22]. 
 

2
iX

K

1i iibjXiX
k

ji

1ji, ijb
k

1i iXibobY 












(2) 
where bo is the free term of the regression equation. The 
coefficients b1, b2, b3 and b4 are the linear terms. The 
coefficients b11, b22, b33 and b44 are quadratic terms and 
the coefficients b12, b13, b14, b23, b24  and  b34 are 
interaction terms. 
 Statistical software Quality America DOE PC 
IV [23] was used to calculate the values of these 
coefficients.  The values of the regression coefficients 
gives an idea as to what extent the control parameters 
affect the response. The less significant coefficients are 
eliminated along with the responses with which they are 
associated, without compromising much on accuracy. 
This is done by using student’s t – test [24]. According 
to this test, when the calculated value of corresponding 
to the coefficient exceeds the standard tabulated value 
for the probability criterion kept at 0.75, the coefficient 
becomes significant otherwise it becomes insignificant. 
The final mathematical model was developed solely 
using the significant coefficients. The final 
mathematical model as determined by the above 
analysis is shown in Eqn (3) as follows 
 
Surface roughness (Ra) = 1.555-0.113α-
0.087S+0.06F+0.011D+0.117α2- 0.038S2 +0.054F2-
0.008D2+0.097SD                                                  (3) 
 
5. Development of neural network model 
 Artificial neural networks, one of the most 
powerful computer-modelling techniques based on 
statistical approach, currently being used in many fields 
of engineering for modelling complex relationships that 
are difficult to describe with physical models. The 
attraction of neural networks comes from their 
remarkable information, processing characteristics 
pertinent mainly to nonlinearity, high parallelism, fault 
and noise tolerance, and learning and generalized 
capability. There has been continual increase in research 
interest in the application of artificial neural networks in 
modelling and monitoring of machining processes. The 

objective of this study was to model the surface 
roughness of 304 grade stainless steel specimen. 
 
5.1 Feed-forward neural network model 
 The network used here for predicting surface 
roughness is a feed-forward back propagation network. 
The network is a multilayer network. It consists of an 
input layer used for feeding the input data of the 
experiment, an output layer used for generating the 
response and at least one hidden layer used as training 
function to process the input data and yield output. This 
network uses network training function that updates 
weights and bias values, according to the gradient 
descent to reduce error. 
 Data obtained from the experiments were 
provided to a network at the learning stage, i.e., 
machining parameters and surface roughness values. 
During network learning, the network output was 
compared with the desired output and the connector 
weights inside the network were adjusted to minimize 
the difference. The error was then propagated 
backwards through the network and weights were 
changed, based on the feed forward back propagation 
learning algorithm. This learning process is an iterative 
one, and was stops once an acceptable error was 
reached. When the trained network was presented with 
new input (beyond training), the network responded 
according to the knowledge it acquired [25, 26].  
 
6. Training the Neural Network 
 In this study, the input parameters used were 
the four main parameters, i.e., Helix angle (α), Spindle 
speed (S), Feed rate (F) and Depth of cut (D). The 
output parameter was the response, i.e., Surface 
roughness. In total, 125 experimental data were 
collected for building the neural network model. In 
order to relieve the training difficulty and balance the 
importance during the training process, the data should 
be normalized. The data are normalized between slightly 
offset values such as 0.1and 0.9 rather than between 0 
and 1 to avoid saturation of the sigmoid function leading 
to slow or no learning. The normalized values for each 
row of input and output data set were calculated using 
Eqn. (4) [27] 


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                                            (4) 
Where    
Xi  =  Normalized input/output value 
Zi  =  Actual input/output value 
Zmax  =  Maximum input/output value 
Zmin  =  Minimum input/ output value 
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 A feed forward back propagation artificial 
neural network model was created keeping four neurons 
in the input layer, one neuron in the hidden layer and 
one neuron in the output layer by using MATLAB 7.6 
[28]. The number of neurons in the hidden layer varied 
between 1 and 25 and they had to be decided based on 
trial and error. This was determined by gradually the 
increasing the number of neurons and observing their 
effect on the predicted value. Finally, the structure of 
the network selected was 4 -12 -1 (4 neurons in the 
input layer, 12 neurons in the hidden layer and 1 neuron 
in the output layer). The network architecture is shown 
in Fig. 3. 
 

  
There is no specific rule available on how many data 
could be used for training and how much for testing and 
validation. The general guide line is that the training 
data should be more than testing and validation. Hence 
out of 125 experimental data 70% was used for training, 
15% for testing and another 15% for validation. Thus in 
total, 88 data were used for training, 19 data for testing 
and 18 data for validation.  
 
7. Testing the Neural Network 
 The network was trained to determine the 
performance of the established model of surface 
roughness. During training each time a set of inputs Xi 
of a training sample was presented and the 
corresponding output Yo (predicted values) was 
obtained. The predicted value of the network model was 
compared with the actual value (Yd). The comparison 
was done by calculating the mean sum of the squared 
error (MSE) between Yd and Yo using Eqn (5) 
 

2)oYdY(MSE                                              (5) 
 
 The objective of the algorithm is to minimize 
the mean sum of squared error for the entire 
experimental data. In this study, the net work was 
trained for 103 iterations. Further training did not seen 
to improve the modelling performance of the network. 
The average MSE obtained was 0.00031084, which 
shows that the model is very accurate. The performance 
goal of the network is displayed in Fig. 4. 
 

   
Fig. 4 Performance Goal of the Network 

 
 The percentage of error of the neural network 

model was calculated as the percentage difference 
between the experimental and predicted value relative to 
the predicted value.  The result indicates that the 
percentage error falls within the range of 0.0457% to -
5.321%, as displayed in Fig. 5. 
 

 
 

Fig. 5 Error Graph 
  
The regression analysis was carried out to find out the 
correlation coefficient, which was used to measure the 
relationship between the measured and predicted values. 
The R value of ‘1’ indicates a close relationship and ‘0’, 
a random relationship. It was observed that a regression 
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coefficient of R = 0.99395 was obtained for training 
data, R = 0.99003 for testing data, R = 0.99099 for 
validation data and R = 1 for the entire set of data. 
Hence, it can be deduced that this model is helpful for 
accurate prediction of surface roughness. The line of 
best fit was calculated using the regression coefficients, 
as shown in Fig.6. 
 

 
 
Fig. 6 Regression Graph for Observed and Predicted 

Values of Surface Roughness 
 
7.1 Validity of the Neural Model 
 The validity of the neural model was tested by 
conducting additional tests, as shown in Table 3. From 
the above table, it can be inferred that the error 
percentage for additional tests falls within the range of 
0.046 to -5.321%. Hence, the above model is can be 
effectively used for predicting surface roughness. 
 
8. Effects of Process Parameters on Surface  
Roughness 

The influence of the process parameters on the 
surface roughness was studied using the developed 
model. The direct effect of process parameters was 
studied by keeping all the process parameters at the 
middle level, except those parameters whose direct 
effect were being studied. The direct effects of all the 
parameters on surface roughness are discussed below 
 
8.1 Direct effect of helix angle 

From the figure 7, it can be observed that the 
surface roughness (Ra) decreases with an increase in 
helix angle. The use of helical cutter instead of a straight 
one helps to eliminate chatter vibration [29]. It is 
obvious that when chatter vibration decreases, surface 
roughness decreases. Further, increasing the helix angle 

above 400 increases the surface roughness. This could 
be attributed to the weakening of the teeth at higher 
helix angle, resulting in an increased surface roughness. 
From the Figure 5, it is evident that the surface 
roughness is optimum when the helix angle ranges from 
350 to 400 and it is at its maximum at 250. 

 
Table 3: Confirmatory Tests for Validity of Neural 

Model 
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01 2 2 2 2 2.186 2.185 0.046 

02 1 1 1.5 1 1.741 1.746 - 0.258 

03 0 1.5 -1 1.5 1.529 1.549 -1.357 

04 -1 -2 0 0.5 1.686 1.714 -1.631 

05 2 -1 -0.5 -0.5 1.853 1.871 -0.944 

06 0 0.5 1 1.5 1.602 1.687 -5.321 

 

 
 

Fig. 7 Direct Effect of Helix Angle 
 

8.2 Direct Effect of Spindle Speed 
From Figure 8, it can be observed that the 

spindle speed has a significant effect on surface 
roughness. Also, it can be bserved that when spindle 
speed ranges from 700 rpm to 1400 rpm, the surface 
roughness slightly increases with an increase in spindle 
speed. Further increase in spindle speed up to 3500 rpm 
decreases the surface roughness. This is in accordance 
with the results obtained by [8]. Further, as stated by 
him, an increase in spindle speed results in reduced 
cutting time, which in turn minimizes the propagation of 
tool wear and surface roughness. From Figure 6, it is 
evident that the surface roughness is optimum when the 
spindle speed is 3500 rpm and it is at its maximum at 
1400 rpm. 

 
8.4 Direct effect of depth of cut 

The effect of depth of cut (D) on surface 
roughness (Ra) is shown in figure 10. When the depth of 
cut ranges from 0.2 mm to 0.8 mm, the surface 
roughness can also be found to increase. When the depth 
of cut is lower, there is less work piece material adhered 
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to the flank of the tool than at larger depth of cut. Since 
the heat and the forces generated during the cutting 
process are higher at larger depth of cut. Therefore, it 
can be inferred that higher temperature and higher 
forces are the main reasons that cause the adhesion of 
work piece material onto the tool flank face; which in 
turn accelerates tool wear and surface roughness [30]. 
But with an increase in depth of cut (D) beyond 0.8 mm, 
surface roughness (Ra) also shows a moderate decrease. 
From Figure 8, it is evident that the surface roughness is 
optimum when the depth of cut is 0.2 mm and it is at its 
maximum at 0.8 mm. 

 
 

Fig. 8 Direct Effect of Spindle Speed 
 

 
 

Fig. 10 Direct effect of depth of cut 
 

9. Optimization Methodology Using GA 
Technique 
                    The GA (Genetic algorithm) is a powerful 
and robust tool in solving optimization problems in the 
engineering mathematics and the other fields. GAs are 
computerized searching and optimization algorithms 
based on Darwin’s evolutionary computation technique 
which presents the idea of “survival fittest” and “natural 
selection” [31-32]. 
The GA hopes to converge on the better solution by 
beginning with a set of potential solution changing them 
through several generations. This process starts with a 
potential solution of chromosomes (usually in the form 
of binary string) which are created or chosen at random. 
The entire set of these chromosomes evolve during 

several generations or iterations. New generations are 
created using the crossover and mutation operators. 
Crossover performs splitting two chromosomes and then 
integrating one half of each chromosome with the other 
pair. Mutation is carried out by flipping a single bit of 
chromosome. The chromosomes are then evaluated 
utilizing a fitness criterion and the best ones are saved 
while the other is thrown. The process completes once a 
near optimum solution that has a fitness value, is found. 
The flowchart of GA searching procedure is briefly 
illustrated. 
 
9.1 Optimization of surface roughness with GA 
 The best selection of cutting parameters 
improves not only the benefit for end milling cost, but 
also the surface quality to a large extent by minimizing 
the roughness value. in the present study, an effective ga 
is developed to determine the best combinations of 
cutting parameters given in table by exploiting global 
optimization method. the problem of optimization of 
cutting parameters can be described by minimizing 
surface roughness as objective function. The present 
optimization problem is stated as follows: 
 
9.2 Results of GA 
 Figure 11 shows the results obtained by 
running GA source code in MATLAB 7.6. The initial 
variation in the curve is due to the search for an 
optimum solution. It is evident that minimum surface 
roughness of 0.75132µm is observed at 30th iteration 
and converges to the same value up to 52 iterations. The 
optimum values of the process variables obtained from 
GA are given below: 
Find Ra = [α,S,F,D]   to minimize f (Ra) = (α,S,F,D) 
Subject to cutting parameters: 
 5 ≤ α ≤ 45 (°) 
700 ≤ S ≤ 3500 rpm 
0.03≤ F ≤ 0.15 mm/rev 
0.2≤ D ≤ 1.0 mm 
 

 
 

Fig.11 Best Fitness value 
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The optimum values of the process variables obtained 
from GA are given below: 

1. Helix angle       = 36.30(°) 

2. Spindle speed   = 3497 rpm 
3. Feed rate          = 0.0733 mm/rev 
4. Depth of cut     = 0.2044 mm 

 
10. Conclusions 
 The investigation of this study indicates that 
the parameters helix angle, spindle speed, feed rate and 
depth of cut are the primary factors influencing the 
surface roughness of AISI 304 stainless steel during end 
milling. The following conclusions were arrived at from 
the present investigation: 

i. Neural network model developed in this work 
from experimental data and GA-based 
optimization used in this work, it is possible to 
control the process to achieve the desired surface 
quality in the end milling process. 

ii. It was observed that a regression coefficient of R = 
0.99395 was obtained for training data, R = 
0.99003 for testing data, R = 0.99099 for 
validation data and R = 1 for all the data. Hence, 
there exists a close relationship between the 
experimental and the developed model. 

iii. Fractional factorial technique with 125 
experimental runs can be effectively used for 
conducting experiments to collect experimental 
data for developing an ANN model. 

iv. The minimum surface roughness obtained from 
experimental studies was 1.016 µm when the 
process parameters such as helix angle, spindle 
speed, feed rate and depth of cut were at 36°30´, 
3497 rpm, 0.0733 mm/rev and 0.2044 mm 
respectively. 

v. The optimization of process parameters was done 
using a GA and source code was successfully 
developed in MATLAB 7.6 for doing the 
optimization. 

vi. The optimal process parameters gave a value of 
0.75132 µm for surface roughness, which 
demonstrates the accuracy and effectiveness of the 
developed model. 
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