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ABSTRACT 
 The aim of this article is to carry out an analysis to enhance the performance of the ferrofluid 

lubricated porous step bearing. The porous coating is assorted to the lower flat impermeable surface. A step 

is there in the upper surface, which approaches the lower surface. This study considered that the magnetic 

field is flexible and oblique to the lower surface. By considering Jenkins Model, expressions for pressure 

and load capacity are obtained. The non-dimensional load capacity is also calculated for various parameters. 

Based on the results, it is observed that load capacity increases if a suitable step size is considered. Also, a 

comparison between R. E. Rosensweig Model and Jenkins Model is carried out. Finally, designing a porous 

step bearing, one should consider Jenkins Model over R. E. Rosensweig Model. 

 

Keywords:  Step bearing, ferrofluid lubrication, R. E. Rosensweig Model and Jenkins Model and Load 

Capacity 

 

 

1. Introduction 

Step bearings are widely studied since they are 

used in industry as thrust bearing due to their benefit in 

machinery load and minimizing cost. To improve the 

performance of vibrations in rotors, journal bearings also 

have some steps. 

In 1993, Leek et al. [1] studied an electro-

rheological fluid flow experimentally in the case of 

Rayleigh step bearing. Shah [2] studied ferrofluid 

lubricated step bearing and concluded that by using 

ferrofluid (FF), one could improve the bearing 

performance. Later on, in 2014, Shah and Patel [3] 

analyzed magnetic fluid (MF) lubricated step bearing by 

considering various porous structures and determined 

that better load was obtained in the globular sphere model 

than that of the capillary fissure model. They have 

considered Neuringer-Rosenweig Model (NR Model) [4] 

for their study.  

Squeeze velocity [5] occurs when lubricated 

surfaces approach each other in the fluid film region. 

Such velocity is so-called squeeze velocity. Squeeze film 

behaviour is observed in numerous applications such as 

gears, bearings, hydraulic systems, rolling elements, 

clutch plates, human knee joints, etc. 

As exotic magnetic colloids, ferromagnetic 

ferrofluids have excellent tribological features for several 

applications in mechanical engineering. The details can 

be seen in Rosensweig [4].  

 

 

 

 

 

 

 

 

When external magnetic field B is applied on the 

film region, the fluids experience magnetic body forces 

(M.∇) B, which depends upon the magnetization vector 

M due to ferromagnetic particles. These features are 

helpful in many applications such as sensors, elastic 

damper, filtering apparatus, bearings, etc. [4-9]. Verma 

[10] deliberate squeeze film bearing (MF lubricated) 

using three porous coats attached to the lower surface and 

exhibited that due to the effect of MF lubricant, load-

carrying capacity increases as compared to conventional 

fluid lubricant. Many researchers (for example, [10-13]) 

have studied MF lubricated various designed bearings 

like porous slider bearings, axially undefined journal 

bearing, squeeze film bearings in the presence of slip 

velocity and anisotropic permeability. 

This study aims to obtain Reynold's type 

equation for porous step bearing (water-based FF 

lubricated) by considering Jenkins's Model (JE Model). 

In the present study, the magnetic field is variable and 

tilted to the lower plate. Also, non-dimensional load 

carrying capacity and non-dimensional pressure is 

calculated by considering suitable boundary conditions 

for various parameters like the impact of width of the 

porous layer, step size, permeability, magnetic field 

strength, and width of the film region.  
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2. Mathematical Demonstrating of the 

problem 

 
 

Fig. 1 Step bearing system 

Many types of step bearings are used in 

machinery. Fig. 1 shows the step bearing system having 

length 𝐿 in x-direction considered for the study. The 

porous layer is attached to the lower surface having 

width 𝑙. The two plates are separated by MF, which is in 

the film region in the y-direction, having a height 

ℎ (ℎ >> 𝐿). The first step has a length 𝐿1 and height 

ℎ1 = ℎ and the second step has a length 𝐿2 and height ℎ2. 
Also, from the figure, it is clear that ℎ1 > ℎ2 and the 

squeeze velocity is 𝑉 = −
𝑑ℎ

𝑑𝑡
= −ℎ̇. The pressure in the 

porous region is 𝑃 whereas in the first and second step 

the fluid pressure is 𝑝1 and  𝑝2 respectively. The external 

magnetic field vector is denoted by 𝑩. 

3. Flow Models of Magnetic Fluid Flow 

 In 1964, Neuringer and Rosensweig [4] 

proposed a simple model for the flow of magnetic fluids 

in the presence of fluctuating external magnetic fields. 

The NR Model's fundamental flow equations are as 

follows: 

𝜌[�̅�. 𝛻]�̅� = −𝛻𝑝 + 𝜂𝛻2�̅� + 𝜇0(�̅�. 𝛻)𝐁, (1) 

𝛻. �̅� = 0, (2) 

𝛻 × 𝐁 = 0, (3) 

𝛻. (𝐁 + �̅�) = 0, (4) 

�̅� = �̅�𝐁, (5) 

where 𝜌 is the density of fluid, �̅� is the fluid velocity 

vector in film region, 𝑝 is film pressure,𝜂 is the viscosity 

of fluid, 𝜇0 is free space permeability, �̅� is the 

magnetization vector, 𝐁 is the applied magnetic field, 

�̅�  is magnetic susceptibility of the fluid. The details can 

be seen in [14]. In 1972, Jenkins modified the NR flow 

Model to describe the flow of MF. By considering 

Maugin's modification   [15, 16], equations of JE model 

for steady fluid flow are 

𝜌[�̅�. ∇]�̅� = −∇𝑝 + 𝜂∇2�̅� + 𝜇0(�̅�. ∇)𝐁 + 𝜌𝛼2∇ ×

(
�̅�

𝑀
× �̅�∗), (6) 

 𝛻. (𝐁 + 4𝜋�̅�) = 0, (7) 

 �̅� = �̅�𝐵, (8) 

and 

 �̅�∗ =
1

2
(∇ × �̅�) × 𝑀,̅̅ ̅ (9)   

In (6), 𝛼2 is the material parameter (the SI unit of 𝛼2  is 

𝑚3𝑠−1𝐴−1), 𝑀 is magnetization strength, and 𝐵 is 

applied magnetic field strength. 

4. Analysis 

Using the conventions of hydrodynamic 

lubrication and the flow is stable and axially symmetrical, 

(2), (3), (6)-(9) turns out to be 

 
𝜕2𝑢

𝜕𝑦2 =
1

𝜂(1−
𝜌𝛼2�̅�𝐵

2𝜂
)

𝑑

𝑑𝑥
(𝑝 −

1

2
𝜇0�̅�𝐵2), (10)                                                                                                     

where expression of B is 

 𝐵2 = 𝐾𝑥(𝐿 − 𝑥), (11) 

In (11), K is quantity chosen such that the field strength 

and the dimensions of both sides of (11) are the same. If 

𝜑𝑥 and 𝜂𝑥denotes the permeability in the lower porous 

matrix in the x-direction and the porosity of the lower 

porous region in the x-direction, respectively, solving 

(10) under the boundary conditions [11] 

𝑢 =
1

𝑠

𝜕𝑢

𝜕𝑦
,   𝑤ℎ𝑒𝑛 𝑦 = 0   

and  𝑢 = 0, 𝑤ℎ𝑒𝑛 𝑦 = ℎ,  

where ‘h’ is film thickness, s is a slip defined by 
1

𝑠
=

√𝜑𝑥𝜂𝑥

5
 , one attains 

 𝑢 =
(1+ℎ𝑠)𝑦−𝑠𝑦ℎ2−ℎ2

2𝜂(1+ℎ𝑠)(1−
𝜌𝛼2�̅�𝐵

2𝜂
)

𝜕

𝜕𝑥
(𝑝 −

1

2
𝜇0�̅�𝐵2) (12)                                         

The components of the fluid velocity in the porous region 

in x-direction and y-direction are 

 �̅� = −
𝜑𝑥

𝜂
[

𝜕

𝜕𝑥
(𝑃 −

1

2
𝜇0�̅�𝐵2) +

𝜌𝛼2�̅�

2

𝜕

𝜕𝑦
(𝐵

𝜕𝑢

𝜕𝑦
)]

  (13)                                                                                                          
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and 

 �̅� = −
𝜑𝑦

𝜂
[

𝜕

𝜕𝑦
(𝑃 −

1

2
𝜇0�̅�𝐵2) −

𝜌𝛼2�̅�

2

𝜕

𝜕𝑥
(𝐵

𝜕𝑢

𝜕𝑦
)]

  (14)                                                                                      

respectively. In (13) and (14), P denotes fluid pressure in 

the porous region and 𝜑𝑦 represents permeability in the 

lower porous matrix in the y-direction. Next, the equation 

of continuity in the porous matrix is 

 

 
𝜕𝑢

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
= 0. (15)  

                                                                                                                                

By using (13) & (14) and integrating (15) with respect to 

y over (−𝑙, 0) yields 

 

𝜑𝑥𝑙
𝜕2

𝜕𝑥2 (𝑃 −
1

2
𝜇0�̅�𝐵2) + 𝜑𝑦

𝜕

𝜕𝑦
(𝑃 −

1

2
𝜇0�̅�𝐵2)|

𝑦=0
+

(𝜑𝑥 − 𝜑𝑦)
𝜌𝛼2�̅�

2

𝜕

𝜕𝑥
(𝐵

𝜕𝑢

𝜕𝑦
)|

𝑦=−𝑙

𝑦=0

= 0                               

(16) 

 

According to Morgan–Cameron approximation [17],  the 

surface is solid at 𝑦 = −𝑙. Equation (16) is equivalent to  

 
𝜕

𝜕𝑦
(𝑃 −

1

2
𝜇0�̅�𝐵2)|

𝑦=0
= −

𝜑𝑥𝑙

𝜑𝑦

𝜕2

𝜕𝑥2 (𝑃 −
1

2
𝜇0�̅�𝐵2) −

(𝜑𝑥−𝜑𝑦)𝜌𝛼2�̅�

2𝜑𝑦

𝜕

𝜕𝑥
(𝐵

𝜕𝑢

𝜕𝑦
)|

𝑦=−𝑙

𝑦=0

                                            

(17) 

 

Also, by using (12), one can obtain  

 

𝜕

𝜕𝑥
(𝐵

𝜕𝑢

𝜕𝑦
)|

𝑦=−𝑙

𝑦=0

=
𝜕

𝜕𝑥
{

𝐵𝑙

𝜂(1−
𝜌𝛼2�̅�𝐵

2𝜂
)

𝜕

𝜕𝑥
(𝑝 −

1

2
𝜇0�̅�𝐵2)}                                                                        

(18) 

Form (17) and (18), 

 
𝜕

𝜕𝑦
(𝑃 −

1

2
𝜇0�̅�𝐵2)|

𝑦=0
=  −

𝜑𝑥𝑙

𝜑𝑦

𝜕2

𝜕𝑥2 (𝑃 −
1

2
𝜇0�̅�𝐵2)  −

(𝜑𝑥−𝜑𝑦)𝜌𝛼2�̅�

2𝜑𝑦

𝜕

𝜕𝑥
{

𝐵𝑙

𝜂(1−
𝜌𝛼2�̅�𝐵

2𝜂
)

𝜕

𝜕𝑥
(𝑝 −

1

2
𝜇0�̅�𝐵2)}          (19) 

 

Since the components of fluid velocity are continuous 

across the surface 𝑦 = 0, 𝑤|𝑦=0 = ℎ̇ − �̅�|𝑦=0. Hence 

from (14), 

 

𝑤|𝑦=0 = ℎ̇ +
𝜑𝑦

𝜂

𝜕

𝜕𝑦
(𝑃 −

1

2
𝜇0�̅�𝐵2)|

𝑦=0
−

𝜑𝑦𝜌𝛼2�̅�

2𝜂

𝜕

𝜕𝑥
(

−𝑠ℎ2𝐵

2𝜂(1+ℎ𝑠)(1−
𝜌𝛼2�̅�𝐵

2𝜂
)

𝜕

𝜕𝑥
(𝑝 −

1

2
𝜇0�̅�𝐵2))                

(20) 

 

Now the equation of continuity in the film (non-porous) 

region is 

 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
= 0.                                 (21) 

 

Putting the value of 𝑢 from (12) and integrating the 

resultant equation with respect to 𝑦 one gets 

 

[
𝑦3

3
(ℎ𝑠+1)−

ℎ2𝑦2𝑠

2
−ℎ2𝑦]

𝑦=0

𝑦=ℎ

2𝜂(1+ℎ𝑠)(1−
𝜌𝛼2�̅�𝐵

2𝜂
)

2 [(1 −
𝜌𝛼2�̅�𝐵

2𝜂
)

𝜕2

𝜕𝑥2 (𝑃 −

1

2
𝜇0�̅�𝐵2) +

𝜌𝛼2�̅�

2𝜂

𝜕𝐵

𝜕𝑥

𝜕

𝜕𝑥
(𝑃 −

1

2
𝜇0�̅�𝐵2)] + 𝑤ℎ − 𝑤0 = 0    

(22) 

 

Using (19) and (16) in (22) yields 

 

 

𝜕

𝜕𝑥
[{−12𝜑𝑥𝑙 +

(4+ℎ𝑠)ℎ3+(
3𝑠𝜌𝛼2�̅�𝜑𝑦ℎ2𝐵

𝜂⁄ )

(1+ℎ𝑠)(1−
𝜌𝛼2�̅�𝐻

2𝜂
)

−

6𝜌𝛼2�̅�(𝜑𝑥−𝜑𝑦)𝑙𝐵

𝜂(1−
𝜌𝛼2�̅�𝐵

2𝜂
)

}
𝜕

𝜕𝑥
(𝑝 −

1

2
𝜇0�̅�𝐵2)] = −12𝜂ℎ̇              

(23) 

 

Presenting the non-dimensional quantities  

𝑋 =
𝑥

𝐿
, ℎ̅ =

ℎ

ℎ2

, 𝑎 =
ℎ1

ℎ2

,   �̅� =
−ℎ2

3𝑝

𝜂ℎ̇𝐿2
,   

 𝜇∗ =
−𝐾𝜇0�̅�ℎ2

3

𝜂ℎ̇
,     𝐿1

̅̅ ̅ =
𝐿1

𝐿
, �̅� = 𝑠ℎ2, 

𝜓𝑥 = −
𝜑𝑥𝑙

ℎ2
3  ,    𝛽 =

𝜌𝛼2�̅�√𝐾𝐿

2𝜂
,     𝛾∗ =

6𝜑𝑦

ℎ2
2 ,   𝜓𝑦

=
𝜑𝑦𝑙

ℎ2
3 

and  𝐵2 = 𝐾𝑥(𝐿 − 𝑥)gives 𝐵 = 𝐿√𝐾√𝑋(1 − 𝑋), (23) 

reduces to the Reynold's type equation 

 
𝑑

𝑑𝑋
[𝐺

𝑑

𝑑𝑋
(�̅� −

𝜇∗𝑋(1−𝑋)

2
)] = 12,                              

(24) 

where  

𝐺 = 12𝜓𝑥 +
ℎ̅3(4+ℎ̅�̅�)+�̅�𝛽𝛾∗ℎ̅2√𝑋(1−𝑋)

(1+ℎ̅�̅�)(1−𝛽√𝑋(1−𝑋))
+

12𝛽(𝜓𝑥+𝜓𝑦)

1−𝛽√𝑋(1−𝑋)
       

(25) 
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5. Solution 

For the first step(0 ≤ x ≤ L1) 

The non-dimensional pressure �̅� = 𝑝1̅̅̅ in the first step is 

obtained by taking ℎ̅ = 𝑎 in (24) and solving under 

pressure boundary conditions �̅� = 𝑝1̅̅̅ = 0 at 𝑋 = 0 and 

�̅� = 𝑝�̅� (here 𝑝�̅� is non-dimensional pressure at step) at 

𝑋 = 𝐿1
̅̅ ̅. Hence 

𝑝1̅̅̅ =
𝜇∗𝑋(1−𝑋)

2
+ ∫ {

12𝑋+
1

𝐼1
{𝑝𝑐̅̅̅̅ −

𝜇∗𝐿1̅̅ ̅̅ (1−𝐿1̅̅ ̅̅ )

2
−12𝐼4}

𝐺
}

𝑋

0
𝑑𝑋,      

(26) 

where 𝐼1 = ∫
1

𝐺
𝑑𝑋

𝐿1̅̅̅̅

0
, 𝐼4 = ∫

𝑋

𝐺
𝑑𝑋

𝐿1̅̅̅̅

0
. 

For the second step(𝐿1 ≤ 𝑥 ≤ 𝐿) 

The non-dimensional pressure �̅� = 𝑝2̅̅ ̅ in the second step 

is obtained by taking ℎ̅ = 1 in (24) and solving under 

pressure boundary conditions �̅� = 𝑝2̅̅ ̅ = 0 at 𝑋 = 1 and 

�̅� = 𝑝�̅� at 𝑋 = 𝐿1
̅̅ ̅. Thus 

𝑝2̅̅ ̅ =
𝜇∗𝑋(1−𝑋)

2
+ 12 (∫

𝑋

𝐺

𝑋

0
𝑑𝑋 − 𝐼2) + (

(∫
1

𝐺

𝑋
0 𝑑𝑋−𝐼2)

(𝐼1−𝐼2)
{𝑝�̅� −

𝜇∗𝐿1̅̅̅̅ (1−𝐿1̅̅̅̅ )

2
− 12𝐼4 + 12𝐼3}),                                          

(27) 

where 𝐼2 = ∫
1

𝐺
𝑑𝑋

1

0
, 𝐼3 = ∫

𝑋

𝐺
𝑑𝑋

1

0
. 

Since the flow rate at 𝑥 = 𝐿1 is continuous, 

−
ℎ1

3

12𝜂

𝑑𝑝1

𝑑𝑥
= −

ℎ2
3

12𝜂

𝑑𝑝2

𝑑𝑥
 

which in non-dimensional form becomes 

𝑎3 𝑑𝑝1̅̅̅̅

𝑑𝑋
=

𝑑𝑝2̅̅̅̅

𝑑𝑋
 at 𝑋 = 𝐿1

̅̅ ̅                                               (28) 

The pressure at 𝑥 = 𝐿1 is 𝑝�̅� which can be obtained from 

(26), (27) and (28) as 

𝑝�̅� =
1

(
𝑎3

𝐺
.

1

𝐼1
−

1

𝐺(𝐼1−𝐼2)
)

[
1

2
𝜇∗(1 − 2𝑋)(1 − 𝑎3) +

1

𝐺
{

𝑎3

𝐼1
{

1

2
𝜇∗𝐿1

̅̅ ̅(1 − 𝐿1
̅̅ ̅) + 12𝐼4} +

1

𝐼1−𝐼2
{−

1

2
𝜇∗𝐿1

̅̅ ̅(1 −

𝐿1
̅̅ ̅) − 12𝐼4 + 12𝐼3}}]                                                           

(29) 

The non-dimensional load capacity obtained as 

�̅� = (
𝜇∗

12
(3𝐿1

̅̅ ̅2
− 2𝐿1

̅̅ ̅3
)

+ ∫
1

𝐺
[12𝑋

𝐿1̅̅̅̅

0

+
1

𝐼1

{𝑝�̅� −
𝜇∗𝐿1

̅̅ ̅(1 − 𝐿1
̅̅ ̅)

2
− 12𝐼4} (𝐿1

̅̅ ̅

− 𝑋)] 𝑑𝑋) + 

(
𝜇∗

12
(1 − 3𝐿1

̅̅ ̅2
+ 2𝐿1

̅̅ ̅3
) + 12 ∫ (1 − 𝐿1

̅̅ ̅)
𝑋

𝐺
𝑑𝑋

𝐿1̅̅̅̅

0
+

12𝐼5 − 12(1 − 𝐿1
̅̅ ̅)𝐼3 + {𝐼6 + 𝐼7 − (1 − 𝐿1

̅̅ ̅)𝐼2𝐼∗})                   

(30) 

where 𝐼5 = ∫ (1 − 𝑋)
𝑋

𝐺
𝑑𝑋

1

𝐿1̅̅̅̅  , 𝐼6 = ∫ (1 − 𝐿1
̅̅ ̅)

1

𝐺
𝐼∗𝑑𝑋

𝐿1̅̅̅̅

0
, 

𝐼7 = ∫ (1 − 𝑋)
1

𝐺
𝐼∗𝑑𝑋

1

𝐿1̅̅̅̅ , 𝐼∗ =
1

(𝐼1−𝐼2)
{𝑝�̅� −

𝜇∗𝐿1̅̅̅̅ (1−𝐿1̅̅̅̅ )

2
−

12𝐼4 + 12𝐼3} and 

  �̅� = ∫ 𝑝1̅̅̅𝑑𝑋
𝐿1̅̅̅̅

0
+  ∫ 𝑝2̅̅ ̅𝑑𝑋

1

𝐿1̅̅̅̅ . 

6. Results and Discussions 

  Using Simpson's one-third Rule with 𝑛 = 10 

and for water-based magnetic fluid having density 𝜌 =

1400 𝑘𝑔/𝑚3 and viscosity 𝜂 = 0.012 𝑘𝑔/𝑚𝑠 and for 

fixed values of ℎ1 = 0.00025 𝑚, ℎ2 = 0.00013 𝑚, �̅� =

0.05, 𝛼2 = 0.0001, 𝛼 = 6.06, ℎ̇ = −0.05 𝑚/𝑠, 𝜑𝑥 =

10−9, 𝜑𝑦 = 10−10, 𝐿 (= 𝐿1 + 𝐿2) = 0.02 𝑚, the results 

for non-dimensional load carrying capacity (using 

eq.(29)) are computed based on various tables.  
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  Moreover, when 𝐾 = 0; FF effect without 

magnetic field and 𝐾 ≠ 0, FF effect with the applied 

magnetic field. Similarly, 𝛼2 = 0; represents NR model 

and 𝛼2 = 0.0001 represents the Jenkins model. 

The calculation of magnetic field strength is shown 

below: 

From equation (11) 

𝐵2 = 𝐾𝑥(𝐿 − 𝑥), 

𝑀𝑎𝑥 𝐵2 = 10−4𝐾 

For an example, 𝐵 = 𝑂(106), 𝐾 = 𝑂(1016) 

 

Table 1  �̅� for various values of K and step size 𝑳𝟏 

using NR Model 

Table 2 �̅� for various values of K and step size 𝑳𝟏 

using JE Model 

     𝑳𝟏 → 

 𝑲 ↓     
0.01 0.012 0.014 0.016 0.018 

𝟎 16.6582 15.309 13.6784 13.8694 16.1896 

𝟏𝟎𝟏𝟓 14.903 17.0781 23.2918 33.7996 65.5345 

𝟏𝟎𝟏𝟔 15.1898 17.335 23.5442 34.087 65.9755 

𝟏𝟎𝟏𝟕 18.0607 19.9052 26.0667 36.9591 70.3853 

𝟏𝟎𝟏𝟖 46.7708 45.6081 51.2923 65.6789 114.4824 

From Table-1 and Table-2, the better �̅�  obtained when 

considering Ferro-fluid as a lubricant compared to 

conventional fluid with applied magnetic field effect. It 

is clear from Table-1 and Table-2, in the case of both the 

Models, variation in �̅� observed when K starts with 1015 

and sudden increase in �̅� seen when 𝐾 = 1017 or more. 

From the above tabular values, better �̅� is observed in JE 

Model as compared to NR Model.  

  

Also, Table-1 shows that considering NR Model, step 

size directly affects values of �̅� in the presence of Ferro-

fluid as a lubricant under applied external magnetic field. 

However, when one considers step size 0.016 to 0.018, 

better �̅�  is obtained. 

From Table-2, an increase in step size results in better �̅� 

and drastic increase in �̅� seen for step size 0.018. Such a 

scenario is not seen without a magnetic field effect.  

Table 3 �̅� for various values of 𝝋𝒚 and step size 𝑳𝟏 

using NR Model for fixed 𝝋𝒙 = 𝟏𝟎−𝟗 

     𝑳𝟏 → 

 𝝋𝒚 ↓     
0.01  0.012 0.014 0.016 0.018 

𝟏𝟎−𝟕 16.8926 15.5548 13.9383 14.1682 16.6082 

𝟏𝟎−𝟖 16.8926 15.5548 13.9383 14.1682 16.6082 

𝟏𝟎−𝟗 16.8926 15.5548 13.9383 14.1682 16.6082 

From Table-3, for fixed 𝜑𝑥 = 10−9 and considering NR 

Model, no change in �̅� is observed for any value of 𝜑𝑦 

for the same step size. Moreover, �̅� is lowest when step 

size is 0.014 for any value of 𝜑𝑦 between 10−7 to 10−9. 

Table 4 �̅� for various values of 𝝋𝒚 and step size 𝑳𝟏 

using JE Model for fixed 𝝋𝒙 = 𝟏𝟎−𝟗 

     𝑳𝟏 → 

 𝝋𝒚 ↓     
0.01 0.012 0.014 0.016 0.018 

𝟏𝟎−𝟕 6306.470 7322.698 8486.550 10302.701 13576.344 

𝟏𝟎−𝟖 54.5328 125.0085 174.5669 196.9387 12.5083 

𝟏𝟎−𝟗 16.8926 15.5548 13.9383 14.1682 16.6082 

From Table-4, for fixed 𝜑𝑥 = 10−9 and considering JE 

Model, better �̅� is obtained when 𝜑𝑦 = 10−7 for any step 

size. Also �̅� decreases when there is a decrease in 𝜑𝑦 . 

     𝑳𝟏 → 

 𝑲 ↓     
0.01 0.012 0.014 0.016 0.018 

𝟎 16.658 15.309 13.6784 13.8694 16.1896 

𝟏𝟎𝟏𝟓 16.682 15.3336 13.7044 13.8992 16.2315 

𝟏𝟎𝟏𝟔 16.893 15.5548 13.9383 14.1682 16.6082 

𝟏𝟎𝟏𝟕 19.002 17.7661 16.2779 16.8574 20.3755 

𝟏𝟎𝟏𝟖 40.094 39.8795 39.6731 43.7495 58.0484 
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Table 5 �̅� for various values of 𝝋𝒙 and step size 𝑳𝟏 

using NR Model for fixed 𝝋𝒚 = 𝟏𝟎−𝟏𝟎 

     𝑳𝟏 → 

 𝝋𝒙 ↓     
0.01 0.012 0.014 0.016 0.018 

𝟏𝟎−𝟕 832.080 1545.557 2120.402 2637.070 2804.435 

𝟏𝟎−𝟖 46.3279 83.8343 111.5993 127.5897 66.3641 

𝟏𝟎−𝟗 16.8926 15.5548 13.9383 14.1682 16.6082 

From Table-5, for fixed 𝜑𝑦 = 10−10 and considering NR 

Model, better �̅� is obtained when 𝜑𝑥 = 10−7 for any step 

size. Also �̅� decreases when there is decrease in 𝜑𝑦 . 

Table 6 �̅� for various values of 𝝋𝒙 and step size 𝑳𝟏 

using JE Model for fixed 𝝋𝒚 = 𝟏𝟎−𝟏𝟎 

     𝑳𝟏 → 

 𝝋𝒙 ↓     
0.01 0.012 0.014 0.016 0.018 

𝟏𝟎−𝟕 2985.401 2252.034 2008.338 2461.108 5983.954 

𝟏𝟎−𝟖 77.6486 32.3702 8.6277 12.9484 183.7435 

𝟏𝟎−𝟗 15.1898 17.3350 23.5442 34.0870 65.9755 

From Table-6, for fixed 𝜑𝑦 = 10−10 and considering JE 

Model, better �̅� is obtained when 𝜑𝑥 = 10−7 for any step 

size. Also �̅� decreases when there is a decrease in 𝜑𝑦 . 

 

Fig. 2 �̅� for various step size and porous thickness 

0.0001 m and 0.001 m (NR Model) 

 

Fig. 3 �̅� for various step sizes and porous thickness 

0.0001 m and 0.001 m (JE Model) 

From Figure-2 and Figure-3, it is seen that better �̅� is 

obtained when the uniform thickness of the attached 

porous layer is 0.001 m in both the models, and hence the 

concept of self-lubrication is fulfilled. Also, from Figure-

2, �̅� regularly increases with the increase of first step 

size. But this kind of scenario is not seen in JE Model. 

That means �̅� decreases up to approximately the first step 

size up to 0.015 and then suddenly increases. 

7. Conclusions 

  This study concludes that to design a Porous 

Step Bearing by considering NR Model or JE Model; the 

following points should be considered: 

• One should prefer ferrofluid as lubricant over 

conventional fluid under applied magnetic field 

effect for a better load. 

• Preferably, one should choose a step size from 

0.016 to 0.018. 

• The thickness of the assorted porous layer 

should be minimal. 

• 𝜑𝑦 doesn't play any role when one considers NR 

Model with 𝜑𝑥 = 10−9 and other suggested 

parameters. 

• Preferable values of 𝜑𝑥  is 10−9and 𝜑𝑦 is 10−7 

if one prefers JE Model. 

• It is better to consider JE Model over NR Model 

to design such a bearing. 
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