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ABSTRACT 

This study presents an experimental investigation of the effects of cutting speed, feed rate, 
depth of cut and volume fraction of SiC particles on surface roughness and material removal rate in 
turning of Al-SiC composites. A plan of experiments based on Taguchi method was implemented for 
machining of Al-SiC composites using tungsten carbide tool. Analysis of Variance was employed to 
find out the contribution and influence of each parameter on surface roughness and material removal 
rate. In addition to ANOVA, the multiple performance characteristics were also analyzed using Grey 
relational approach and Taguchi response table by determining grey relational coefficients and grades. 
The optimum level of  parameters setting in machining of Al-SiC composites for minimum surface 
roughness and maximum material removal rate was obtained at 200 m/min of cutting speed (level 3), 
0.1 mm/rev of feed rate (level 2), 1 mm of depth of cut (level 2) and 10% of volume fraction of SiC 
(level 2). 

 
Keywords: Al-SiC Composites, Turning, Surface Roughness, Material Removal Rate and 
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1. Introduction 
Composite materials provides interesting 

opportunities for new product design because of higher 
specific properties of strength and stiffness, increase in 
wear resistance, lower coefficient of thermal 
expansion, dimensional stability at higher temperature 
when compared to unreinforced monolithic alloys. 
Metal matrix composites (MMC) are developed since 
1970s for the aerospace industry, but other application 
in the automotive industry are found during middle of 
1980s. The matrix materials normally used in MMC 
are aluminium, magnesium, titanium and some super 
alloys reinforced with a disperse phase in the form of 
particles, short fibers (whiskers) or long fibers of the 
ceramic material [1]. Even though particulate metal 
matrix composites having excellent mechanical and 
thermal properties, these materials are very much 
complicated to machine. The hard reinforcement 
particles like SiC, Al2O3 acts as abrasive medium 
between cutting tool and work piece finally ensuing in 
high tool wear and more power consumption [2]. The 
fabrication of particulate metal matrix composites 
(PMMC) is easier, large volume production, 
inexpensive than the fiber reinforced MMCs and in 
addition PMMC are of special significance of high 
ductility and lower anisotropic properties [3]. Though 
the many engineering components are manufactured to 

near net shape through casting and forming process, 
they subsequently require machining for preferred 
dimensions, shape and surface texture [4]. The 
necessity of accurate machining of composites is 
increased in diverse fields; therefore selecting most 
suitable machining condition is essential to reduce the 
machining cost, produce superior quality and to 
improve the efficiency of machining. In this study, the 
effects of the process parameters and their level of 
significance on the performance characteristics of 
minimum surface roughness and maximum material 
removal rate are statistically evaluated by analysis of 
variance (ANOVA). Grey relational analysis was also 
used to optimize the parameters for the multi 
performance characteristics of minimum surface 
roughness and maximum material removal rate in 
machining of Al-SiC particulate composites.  
 
2. Literature Survey 

Sahin investigated machinability of MMCs 
containing 20 wt.% SiC and 10 wt.% SiC particles 
using different coatings of cutting tools, chip breaker  
and geometry of cutting tools. The build up edge 
formation (BUE) was appeared at lower cutting speeds 
for the lower weight fraction of composite [5]. Paulo 
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Davim analyzed the influence of cutting speed, feed 
rate and cutting time on turning MMCs (A356/20SiCp-
T6) using PCD cutting tools based on Taguchi 
techniques. The correlation between cutting speed, feed 
rate and cutting time with tool wear, power consumed 
and surface roughness are established. The cutting 
velocity has the highest statistical influence on tool 
wear and surface finish [6]. Palanikumar and 
Karthikeyan examined the factors influencing surface 
roughness on the machining of Al-SiC particulate 
composites using tungsten carbide tool inserts (K10). 
They concluded that the surface roughness of the 
composite was highly influenced by the feed rate, 
cutting speed and volume fraction of SiC particles [7]. 
Basheer et al. developed a model to envisage surface 
roughness in precision machining of metal matrix 
composites using PCD tools by varying the factors 
such as size and volume of reinforcement, tool nose 
radius, feed rate and depth of cut. They have concluded 
that roughness of the machined surfaces significantly 
influenced by the size of reinforcements and its 
magnitude is comparable to that of the feed rate and 
tool nose radius [8]. Lin et al. experimented the 
machining of Al359/SiC/20p using centre lathe with 
different cutting speeds of 300, 500 and 700 m/min, 
feed rates of 0.1, 0.2 and 0.4 mm/rev and depth of cut 
as constant at 0.5mm. He observed that material 
removal rate was more at higher feed rate and lower 
cutting speed. Surface finish of the machined samples 
does not vary extensively with the change of cutting 
speed but deteriorates with increasing feed rates [9]. 
The existence of uniformly dispersed SiC particles 
leads to discontinuous chip formation. Build up edge 
formation was observed at low cutting speeds, while at 
high cutting speeds low specific power consumption 
and very good surface finish could be achieved during 
continuous turning of composite rods [10]. Kannan and 
Kishawy deliberated the mechanisms of tool wear, 
surface roughness and chip formation under both dry 
and wet turning of Al-SiC particulate composites with 
tungsten carbide tool. The wet turning has less 
favorable effect over surface roughness when 
compared to dry turning conditions due to flushing 
away of particulates over the machined surface, thus 
produces voids and pit holes [11]. Narahari et al. 
evaluated that tungsten carbide tools had a longer tool 
life than HSS under different machining conditions of 
eutectic Al-Si (LM6) and hypoeutectic Al-Si (LM25) 
alloys reinforced with 10, 15, and 20% SiC particles. 
The tool life of WC/HSS tool with cutting fluid is only 
about 10 to 20% of that without cutting fluid while 
machining composites [12]. The HSS tools are 
incapable of machining with Al-SiC composites. 
Tungsten carbide tools are chosen for rough machining 

in order to reduce the machining cost and PCD tools 
could be preferred for finish machining operations [7]. 

  
3. Experimental Procedures 

The composites were fabricated from a molten 
metal of aluminium alloy using an electric induction 
furnace. The aluminium alloy LM25 was the matrix 
phase and SiC particles with an average size of 25µm 
were used as the reinforcement material. Aluminium 
alloy LM25 contains silicon content between 7 to 15% 
which will inhibit the formation of reaction product 
Al4C3 from SiC [13]. The chemical composition of 
LM25 aluminium alloy is 7%Si, 0.35%Mg, 0.45%Fe, 
0.13%Cu, 0.08%Zn, 0.01%Ni, 0.16%Mn, 0.01Pb, 
0.05%Ti, Al-balance.  

The melting process was carried out in a 
crucible made from graphite. For manufacturing of 
MMCs, 5 wt.%, 10 wt.% and 15 wt.% of SiC particles 
were used. The SiC particles was added and mixed 
homogeneously in aluminium matrix by continuous 
mechanical stirring. Figure 1 shows the production of 
Al-SiC composites using stir casting technology. The 
size of the casting produced was 30mm diameter and 
80mm length which is shown in Fig. 2. The 
specifications of the machining details are given in 
Table 1. All the tests were performed without coolant 
in ACE LT2 type of CNC lathe as per the levels 
indicated in Table 2. 

 

 
 

Fig. 1 Production of Al-SiC Composites 
 

 
 

Fig. 2 Al-SiC Composite Specimens 
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Table 1: Specifications of Machining Details 
 

Work piece 
material 

Al-SiC composites of 5%, 10%, 15% 
of SiC particles 

Machine CNC Lathe 
Tool holder MTJNL 2525M16 

Tool insert TNMG 120408, nose radius – 0.8mm, 
Tungsten Carbide 

Coolant Dry turning 
 
Table 2: Factors and their Levels used for Turning 

Operations 
 

Control factors Level 
 1 

Level 
2 

Level 
3 

Cutting speed A (m/min)  100 150 200 
Feed rate B (mm/rev)  0.075 0.1 0.125 
Depth of cut C (mm)  0.5 1 1.5 
Volume fraction of SiC  
D (%)  5 10 15 

 
In this study, Taguchi tool was used to 

determine optimal machining parameters in turning of 
Al-SiC metal–matrix composites. Taguchi’s orthogonal 
array is the most competent method of experimental 
planning to find out the optimum level of control 
factors on the performance variable [14]. Based on the 
number of parameters and levels, an experimental plan 
of Taguchi L9 orthogonal array has been selected. The 
surface roughness (Ra) was measured by using 
Mitutoyo Surfest SJ-201 contact profilometer with 
cutoff length of 0.8mm and traverse length of 5 mm.  

 
4. Results and Discussion 

The optimal combination of parameters level 
can be determined more accurately by using ANOVA.  
In Taguchi method, the deviation between the 
experimental value and the desired value is represented 
as loss function. This obtained loss function is further 
converted into a signal-to-noise (S/N) ratio. 
Experimental work normally has three possibilities in 
calculation of signal-to-noise ratio which depends on 
the type of quality characteristics; smaller-the-better, 
larger-the-better or normal-the-better [15].  
 
4.1 Surface roughness 

The lower surface roughness (Ra) is the 
indication of better performance in turning process. 
Therefore, optimum machining performance 
characteristic for the surface roughness “smaller the 
better” was selected and its loss function (L) is 
calculated as follows,   
Smaller the better Lij  = (1/n) Σ yij

2                            (1) 

The S/N ratio for the ith performance 
characteristic in the jth experiment can be expressed as: 
S/N ratio = -10 log (Lij)                                              (2) 

The surface roughness of each experiment 
based on orthogonal array and its corresponding signal-
to-noise (S/N) ratio is listed in Table 3. The greater S/N 
ratio value corresponds to a better performance, in spite 
of category of the performance characteristics. 
 

Table 3: Experimental Results for Surface 
Roughness and S/N Ratio Values 

 
Exp Control factors Ra 

µm 
S/N 
dB A B C D 

1 1 1 1 1 3.16 -9.99 
2 1 2 2 2 2.81 -8.97 
3 1 3 3 3 3.94 -11.91 
4 2 1 2 3 1.87 -5.44 
5 2 2 3 1 3.25 -10.24 
6 2 3 1 2 3.32 -10.42 
7 3 1 3 2 2.24 -7.00 
8 3 2 1 3 1.46 -3.29 
9 3 3 2 1 3.54 -10.98 

 
Table 4: ANOVA Results for Surface Roughness 

 

Factor 
S/N ratio (dB) Sum of 

square % Level 
1 

Level 
2 Level 3 

A -10.29 -8.70 -7.09a 15.38 23.51 
B -7.48a -7.50 -11.10 26.14 39.97 
C -7.90a -8.46 -9.72 5.19 7.93 
D -10.40 -8.80 -6.88a 18.70 28.59 

Total    65.40 100 
a – Optimum results of minimum Ra 
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Fig. 3 Mean S/N Graph for Surface Roughness 



Journal of Manufacturing Engineering, September, 2012, Vol. 7, Issue. 3, pp 176-183 
 

www.smeindia .org                                                                                                                                                     © SME 
 

179

M
ea

n 
of

 M
ea

ns

200150100

3.50

3.25

3.00

2.75

2.50

0.1250.1000.075

1.51.00.5

3.50

3.25

3.00

2.75

2.50

15105

Cutting speed (m/min) Feed rate (mm/rev)

Depth of cut (mm) Volume fraction of SiC (%)

Main Effects Plot (data means) for Means

 
 Fig. 4 Mean Graph for Surface Roughness 

 
The machining characteristics are mostly 

affected by the build-up edge formation (BUE). The 
increase in volume fraction of SiC promotes brittleness 
of the composites and subsequently disappearance of 
BUE occurs. This results in good surface finish of the 
machined component. At low speeds, the BUE is 
formed and also the chip fracture readily producing the 
surface roughness. As the speed increases, the BUE 
vanishes, chip fracture decreases and hence the 
roughness decreases. The increase in depth of cut 
induces high normal pressure and seizure on the rake 
face of the tool, which promotes the BUE formation 
[7]. 

The ANOVA results and contribution of each 
parameter towards surface roughness are shown in 
Table 4. The feed rate is the most dominant parameter 
on the performance characteristics of surface 
roughness, with the contribution ratio of 39.97%. The 
effect of other parameters on surface roughness is as 
follows, 28.59% of volume fraction of SiC, 23.51% of 
cutting speed and 7.93% of depth of cut. The S/N 
response table indicates that superior surface finish can 
be achieved at increase in cutting speed and higher 
volume fraction of SiC reinforcement. The optimal 
machining performance for the surface roughness 
based on the analysis of S/N ratio was obtained at 200 
m/min of cutting speed (level 3), 0.075 mm/rev of feed 
rate (level 1), 0.5 mm of depth of cut (level 1) and 15% 
of volume fraction of SiC (level 3) settings. The 
process parameters with its level and corresponding 
signal-to-noise (S/N) ratio of surface roughness are 
shown in Fig. 3.  The mean graph for surface 
roughness Fig. 4 represents the surface roughness 
increases with increase in feed rate, depth of cut and 
decreases with increase in cutting speed and volume 
fraction of SiC particles. 
 

4.2 Material removal rate 
The material removal rate (MRR) was determined from 
the amount of material worn during the period of 
machining in minutes. The high precision digital 
balance meter was used for weighing the samples, 
thereby eliminating the possibility of errors while 
calculating the MRR in machining operation. The 
higher material removal rate is the indication of better 
performance in turning process. Therefore, optimum 
machining performance characteristic for the material 
removal rate “larger the better” was selected and its 
loss function (L) is calculated using equ. 3.  
 
Lij = (1/n) Σ (1/ yij

2)                                                    (3) 
  
The material removal rate of each experiment based on 
orthogonal array and its corresponding signal-to-noise 
(S/N) ratio is listed in Table 5. The ANOVA results are 
tabulated in Table 6, which represents the significant 
effect of each input parameter towards the performance 
characteristics of MRR. The inclusion of SiC in metal 
matrix is reported to increase the hardness, tensile 
strength and heat resistant of the aluminium alloy. The 
rate of change of these properties depends on the 
volume fraction of SiC added to the aluminium alloy. 
The increase in % of SiC results in increase in hardness 
of Al-SiC composites. The higher % of SiC induces 
more flank wear of the tool and simultaneously offers 
less material removal rate [7,10].  
 

Table 5: Experimental Results for Material 
Removal Rate and the S/N Ratio Values 

 
Exp Control factors MRR 

gm/min 
S/N 
dB 

A B C D 

1 1 1 1 1 8.28 18.36 

2 1 2 2 2 19.24 25.68 

3 1 3 3 3 25.05 27.98 

4 2 1 2 3 16.41 24.30 

5 2 2 3 1 45.29 33.12 

6 2 3 1 2 24.16 27.66 

7 3 1 3 2 26.79 28.56 

8 3 2 1 3 10.90 20.74 

9 3 3 2 1 50.81 34.12 
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Table 6: ANOVA Results for Material Removal 
Rate 

 

Factor 
S/N ratio (dB) Sum of 

square % Level 
1 

Level  
2 Level 3 

A 24.01 28.36b 27.81 33.71 15.7
5 

B 23.74 26.52 29.92b 57.44 26.8
4 

C 22.26 28.03 29.89b 95.02 44.4
0 

D 28.53b 27.30 24.34 27.86 13.0
2 

Total    214 100 
b – Optimum results of maximum MRR 
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Fig. 5 Mean S/N Graph for MRR 
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Fig. 6 Mean Graph for MRR 

Aluminium and silicon carbide have very 
different mechanical properties: young’s moduli of 70 
and 400 GPa, coefficients of thermal expansion of 
24x10-6 and 4x10-6 / 0C and yield strengths of 35 and 
600 MPa, respectively. By combining these materials 
of 17%  SiC, an MMC with a young’s modulus of 96.6 
GPa and yield strength of 510 MPa can be produced 
[13]. 

The depth of cut is the fundamental parameter 
which influences the material removal rate with about 
44.40%, followed by feed rate with 26.84%, cutting 
speed with 15.75% and volume fraction of SiC 
particles with 13.02% of the contribution ratio. The 
optimum performance characteristics of higher material 
removal rate as per Taguchi response table is 
A2B3C3D1 with cutting speed of 150 m/min, feed rate 
of 0.125 mm/rev, depth of cut 1.5 mm and 5% volume 
fraction of SiC. The mean graph of S/N ratio Fig. 5 
shows that the material removal rate increases with 
increase in feed rate, depth of cut and with lower 
volume fraction of SiC reinforcement. 
 
4.3 Optimum parameters with multiple 
performance characteristics 

In the grey relational analysis, data 
preprocessing is done to normalize the raw data. When 
the range of series is too large or the optimal value of a 
quality characteristic is too high, it will influence some 
factors to be ignored. Therefore the original 
experimental data are to be normalized to eliminate 
such effect. When the characteristics of original 
sequence is “higher the better” it can be normalized as 
follows [14], 

 
୧୨ݔ =

η౟ౠି୫୧୬ౠη౟ౠ
୫ୟ୶ౠη౟ౠି୫୧୬ౠη౟ౠ

                                                     (4) 

 
When the “lower the better” is a characteristic 

feature of the original sequence, it can be normalized 
as follows [14],  
୧୨ݔ  =

୫ୟ୶ౠη౟ౠିη౟ౠ
୫ୟ୶ౠη౟ౠି୫୧୬ౠη౟ౠ

                                                    (5) 

 
Where, ηij and xij represents original sequence 

and comparability sequence, max ηij and min ηij 
represents the largest and smallest value of original 
sequence ηij, i = 1,…,m; m is the number of response 
variable and j = 1,…,n;  n is the number of 
experimental runs. The grey relational coefficient is 
calculated to express the relationship between ideal and 
normalized data. The grey relational coefficient ξij for 
the ίth performance characteristic in the jth experiment 
can be determined as [14],  
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   ξ୧୨    =
୫୧୬౟୫ୟ୶ౠห୶౟

బି୶౟ౠหା ζ୫ୟ୶౟୫ୟ୶ౠห୶౟
బି୶౟ౠห

ห୶౟
బି୶౟ౠหାζ୫ୟ୶౟୫ୟ୶ౠห୶౟

బି୶౟ౠห
                   (6) 

 Where, x୧଴ is the ideal normalized data for the ίth 
performance characteristic and ζ is identification 
coefficient which lies between 0 and 1. ζ = 0.5 is used 
normally because the value is smaller and distinguish 
ability is larger. The overall evaluation of the 
performance characteristics is based on the grey 
relational grade which is determined by the average 
sum of grey relational coefficient of response variables 
in each experiment [14],  
γ୨   = ൫1 mൗ ൯∑ ω୧ξ୧୨

୫
୧ୀଵ                                                (7) 

Where γj is the grey relational grade for the jth 
experiment, ωi the weighing factor for the ith 
performance characteristic, assume that ω1=ω2=1. 
Table 8 shows the grey relational grade for each 
experiment using L9 orthogonal array.  
 

Table 7: Normalized Values for Each Individual 
Response 

 
Exp Comparability 

sequence Deviation sequence 

Ra MRR Ra MRR 
1 0.3145 0.0000 0.6855 1.0000 
2 0.4556 0.2576 0.5444 0.7424 
3 0.0000 0.3943 1.0000 0.6057 
4 0.8347 0.1912 0.1653 0.8088 
5 0.2782 0.8704 0.7218 0.1296 
6 0.2500 0.3733 0.7500 0.6267 
7 0.6855 0.4352 0.3145 0.5648 
8 1.0000 0.0614 0.0000 0.9386 
9 0.1613 1.0000 0.8387 0.0000 

 
Table 8: Grey Relational Grade and its Order 

 
Exp Grey relational 

coefficient 
Grey 

relational     
grade 

Order 

Ra MRR 
1 0.4218 0.3333 0.3776 9 
2 0.4788 0.4024 0.4406 6 
3 0.3333 0.4522 0.3928 8 
4 0.7515 0.3820 0.5668 4 
5 0.4092 0.7941 0.6017 3 
6 0.4000 0.4438 0.4219 7 
7 0.6139 0.4696 0.5417 5 
8 1.0000 0.3476 0.6738 2 
9 0.3735 1.0000 0.6867 1 

Table 9: ANOVA Results for Grey Relational 
Grade 

 

Factor 
S/N ratio (dB) Sum of 

square % Level 
1 

Level  
2 

Level 
3 

A 0.40 0.53 0.61C 0.07 37.89 
B 0.50 0.67C 0.50 0.08 42.28 
C 0.49 0.56C 0.51 0.01 5.09 
D 0.44 0.56C 0.54 0.03 14.75 

Total    0.18 100 
c – Optimum results of multi performance 
characteristics 
 

In grey relational analysis, original sequence 
data were first transformed into comparability 
sequence and subsequently the grey relational 
coefficient, grey relational grades, orders were 
determined for all experiment runs. When compared to 
all grey relational grades in Table 8, the highest grade 
value is obtained for 9th experimental run. This 
specifies that the machining parameters in the 
experimental run 9 produce the optimum state for the 
better performance of minimum surface roughness and 
maximum MRR among all 9 runs and its surface 
texture of the machined specimen is shown in Fig. 7. 

The parameter setting combination A1B1C1D1 
of the experiment no.1 of orthogonal array represents 
lowest grade and its SEM micrograph of the machined 
surface is shown in Fig.8. In the machining condition 
A1B1C1D1, because of low speed produces high surface 
roughness and also the material removal rate is less in 
this low level of parameters setting.  Based on grey 
relational approach and Taguchi response Table the 
optimum performance of machining Al-SiC composites 
was attained at A3B2C2D2 settings and its SEM 
micrograph at optimum machining conditions is shown 
in Figure 9.  

 

 
 

Fig. 7 SEM Image of Machined Surface in 
Orthogonal Array No. 9 (A3B3C2D1) 
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Fig. 8 SEM Image of Machined Surface in 
Orthogonal Array No. 1 (A1B1C1D1)  

 

 
 

Fig. 9 SEM Image of Machined Surface at 
Optimum Machining Conditions (A3B2C2D2) 

 
5. Conclusions 

The factors influencing surface roughness and 
material removal rate are analyzed using ANOVA and 
grey relational analysis based on Taguchi response 
table and the following conclusions are summarized, 

i. The major contribution and influence of the 
parameters based on Analysis of Variance 
towards surface roughness is feed rate and 
followed by volume fraction of SiC, cutting speed 
and depth of cut. 

ii. The optimal machining performance for 
minimum surface roughness based on the analysis 
of S/N ratio was obtained at 200 m/min of cutting 
speed (level 3), 0.075 mm/rev of feed rate (level 
1), 0.5 mm of depth of cut (level 1) and 15% of 
volume fraction of SiC (level 3) settings. 

iii. The ANOVA results for material removal rate 
indicates that depth of cut is the major parameter 

which influences the material removal rate with 
about 44%, followed by feed rate with 27%, 
cutting speed with 16% and volume fraction of 
SiC with 13% of the contribution ratio.  

iv. The significance of controllable factors on the 
multi performance characteristics is categorized 
in the order of feed rate, cutting speed,   volume 
fraction of SiC and depth of cut.  

v. The optimum factor level of machining Al-SiC 
composites for minimum surface roughness and 
maximum MRR within the feasible ranges are 
cutting speed 200 m/min, feed rate 0.1 mm/rev, 
depth of cut 1 mm and 10 % volume fraction of 
SiC.  

vi. The variable factors are successfully predicted to 
reduce set up time and initial cost towards 
increasing quality and reduce production costs. 
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