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ABSTRACT 
The effects of centrifugal forces on stresses and deformations are important for the design of 

rotating discs. The disc is made out of composite laminate plate which is considered to be specially 

orthotropic. Different composite materials with different laminate sequences have been used for 

investigating the radial and tangential stress resultants in addition to displacements. Classical laminate 

plate theory is used in the analysis to study the effect of anisotropy on the rotating disc stress 

distribution. Stresses and displacements are also found from the Finite Element Software. .A stiffness 

ratio is defined as the ratio of circumferential stiffness to radial stiffness and this is used as a 

parameter to represent the degree of anisotropy. Results obtained from this investigation for stresses 

and displacements have been tabulated and presented graphically. These results are useful for the 

design of rotating discs. 
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1. Introduction 

Rotating disc is a very useful component in 

many engineering applications. Such as turbines, rotors, 

compressors, flywheels and computer’s disc drive. 

Many of these applications require Effect of centrifugal 

forces on stresses and displacements great deal of work 

has been dedicated to area of Effect of centrifugal forces 

on stresses and displacements have been studied for 

different composite laminated rotating discs.  

Many papers appeared in the analysis of 

laminated rotating disc. With increasing demand for 

higher strength to weight ratios, optimizing the 

geometrical and physical properties of disc 

configuration becomes more significant. Seireg and 

surana [1] presented a numerical technique to obtain 

optimum configuration in isotropic rotating discs.  

Anisotropy was investigated by Murthy and 

Sherbourne [2] and Reddy and Srinath [3] handled 

variable density and variable thickness in rotating discs. 

Chang [4], Gurushankar [5], Christensen and Wu [6] 

and Genta and Gola [7] dealt with determining stresses 

via an elasticity approach in orthotropic single- ply 

circular plates with the outer boundary free of any 

constraints. Bert [8] used a laminated plate theory on 

layered plates with extension–bending coupling, and 

with stress free boundaries by which approximate 

solutions were obtained.  

The displacement equation of a rotating 

isotropic circular plate was given in a paper by 

Mostaghel and Tadjbakhsh [9] as they attempted to 

examine the stability of rotating isotropic rods and 

plates when the boundary was restrained to prevent 

motion. The analytical solution of elastic perfectly 

plastic rotating discs of constant thickness and density 

was studied by Gamer [10] using Tresca’s condition.  

Gamer [11, 12] also studied the analytical 

solutions of such disks with a linear strain-hardening 

material behavior using the same yield condition. Guven 

[13] extended this work to rotating disks of thickness 

function h= ho (r/b)
-n

 and density function   ρ =ρo(r/b)
 m

 

and obtained their analytical solution using the same 

material behavior and yield condition.  

Sterner et al. [14] pointed that, the numerical 

analysis usually require extensive computer resources, 

are tedious to perform due to extensive  meshing 

requirements and are expensive, making them 

unsuitable for the elastic analysis of rotating disk with a 

general, arbitrary configuration based on the repeated 

application of a truncated Taylor’s expansion. 

NakiTutuneu [15] determined stresses and deformation 

resulting from centrifugal forces in rotating specially 

orthotropic plates.  

The classical laminate plate theory is employed 

in the analysis and the results are presented in a manner 

which illustrates the effect of anisotropy. The plate is 

assumed to be rigidly fixed to a concentric rod allowing 

no deformation in its central region. The outer boundary 

is either free of any constraints or the plate is placed in a 

stiff casing which presents radial deformation. Jen-san 

Chen and jhi-Lu jhu [16] investigated the in plane 

response of a rotating annular disk under concentrated 

edge loads with both the radial and tangential 

components.  
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Lames’s potentials are used to simplify the 

highly coupled equilibrium equations. It is demonstrated 

that the problem of fixed disk-rotating load differs from 

the problem of rotating disk fixed load not only by the 

centrifugal effect, but also by additional terms arising 

from Coriolis Effect. While the effect of these coriokis 

terms may be negligible when rotational speed is small 

or the concentrated edge load is in radial direction, they 

are important in the high rotational speed range when 

the concentrated edge load is in the tangential direction. 

Rajeev jain et al. [17] proposed a procedure to design a 

constant thickness composite disk of uniform strength 

by radially tailoring the anisotropic elastic constants. A 

special case of an isotropic disc with radially varying 

modulus is also examined. Analytical results were also 

compared with FEM calculations for two cases of 

radially varying anisotropy and for an isotropic disk 

with variable modulus.  

Lou at al. [18] developed a numerical method 

for the analysis of deformations and stresses in elastic-

plastic rotating disks with arbitrary cross section of 

continuously variable thickness and arbitrarily variable 

density made of non-linear strain hardening materials. In 

the present study, the effect of laminated orthotropic 

circular plates used for rotating discs on the stress 

distribution has been analyzed. Two boundary 

conditions are considered:  

(i) Constraint free outer boundary and 

(ii) Fixed outer boundary.  

Further different composite materials have 

been chosen for the analysis to highlight the effect on 

the stress distribution. 

 

2. Stress-Strain Relations 

A circular plate of radius R and having uniform 

thickness is rotating at angular velocity ω. Assuming 

steady rotation symmetric deformation with no bending, 

displacements are described as:  

Displacement in radial direction r, u = f 𝑟  

Displacement in tangential direction θ, v = 0 

Displacement in axial direction, w = 0               (1) 

For an axi-symmetric problem, stresses and strains are 

independent of tangential coordinate θ. The in-plane 

strain components are  

𝜀𝑟 =
𝑑𝑢

𝑑𝑟
, 𝜀𝜃 =

𝑢

𝑟
𝑎𝑛𝑑𝛾𝑟𝜃 = 0                                        (2) 

For specially orthotropic and symmetric circular 

laminated plates, there is no coupling between in plane 

and bending equations. The stress strain relations are 

 

𝑁𝑟

𝑁𝜃

𝑁𝑟𝜃

 =  

𝐴11 𝐴12 0

𝐴21 𝐴22 0

0 0 𝐴66

   
𝜀𝑟

𝜀𝜃

0
                                   (3) 

Where𝑁𝑟 , 𝑁𝜃  are stresses per unit length in the radial 

and tangential directions and terms 𝐴𝑖𝑗  are defined as,  

𝐴𝑖𝑗 =  𝑄 
𝑖𝑗 

(𝑍𝐾

𝑛

𝑘=0

− 𝑍𝐾−1)                                          (4) 

Where n is the total number of plies in the laminate, k is 

the ply number starting from the midplane as shown in 

fig. 1 and 𝑍𝑘 , 𝑍𝑘−1 are distances bottom and top of the 

𝐾 𝑡ℎ  ply from the midplane of the laminate  𝑍 = 0 . 

The transformed in-plane stiffness matrix of the 𝐾𝑡ℎ  ply 

𝑄 𝑖𝑗
(𝑘)

 are given by equation 𝑄 =  𝑇 𝜎 𝑄  𝑇 𝜀 
 

 

Fig. 1 Ply Distance 

 

Substituting equation (2) into (3), 

𝑁𝑟 = 𝐴11𝜀𝑟 + 𝐴12𝜀𝜃 = 𝐴11

𝑑𝑢

𝑑𝑟
+ 𝐴12

𝑢

𝑟
              (5) 

𝑁𝜃 = 𝐴21𝜀𝑟 + 𝐴22𝜀𝜃 = 𝐴21

𝑑𝑢

𝑑𝑟
+ 𝐴22

𝑢

𝑟
              (6) 

 

3. Equilibrium Equation 

The governing differential equation in the 

radial direction is, 
1

𝑟

𝑑

𝑑𝑟
  𝑟𝑁𝑟 − 𝑁𝜃 + 𝜌𝜔2𝑟 = 0                                   (7) 

Where ׳ρ׳ is the mass per unit area. The applied force on 

the disk per unit area is the centrifugal force. 

Substitution of expression for 𝑁𝑟  and 𝑁𝜃  from equations 

(5) and (6) into equation (7) 

𝑟2𝑢′′ + 𝑟𝑢′ −
𝐴22

𝐴11

𝑢 +
𝜌𝜔2𝑟3

𝐴
= 0                             (8) 

Where primes denote differentiation with respect to r. 

Solution for the above equation is,  

u=C1r𝜆 + 𝐶2𝑟
−𝜆 +

𝜌𝜔2

𝐴11(𝜆2 − 9)
𝑟3            (9) 

𝑤ℎ𝑒𝑟𝑒 𝜆 =  
𝐴22

𝐴11

 

When 𝜆2 = 9, the expression for radial 

displacement, 

𝑢 = 𝐷1𝑟
3 + 𝐷3𝑟

−3 +  
1 − 6 log 𝑟

36𝐴11

 𝜌𝜔2𝑟3              (10) 

The constants are evaluated using boundary conditions. 
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4. Boundary Conditions 

 Two different boundary conditions are 

considered. 

1. The disk is not constrained at the 

boundary 

2. The disk is constrained at the 

boundary 

 
 

Fig. 2 Configuration of Rotating Disk 

 
4.1 Constraint free boundary                                      

The inner radius of the disk is ‘a’ and fixed on 

the shaft rotating at an angular velocity ‘ω’ about Z-axis  

as shown in configuration diagram fig. 2. The constants 

of integration𝐶1and 𝐶2 in Eq. (3.9) are evaluated using 

the boundary conditions: 

i) at   𝑟 = 𝑎,  the radial displacements  𝑢 = 0 

ii) at   𝑟 = 𝑎,  the radial stress 𝑁𝑟 = 0  

The constants of the integration 𝐶1 and 𝐶2 are given 

by the expressions. 

𝑪𝟏 =
𝝆𝟐 𝑹𝒍𝟒 + 𝒂𝒍𝟒𝑭𝟑 

𝑭𝟒

                            (𝟏𝟏) 

𝑪𝟐 =
𝝆𝟐  𝑹𝒂 𝒍𝟏𝑹𝒍𝟏𝑭𝟏 − 𝑹𝟑𝒂𝒍𝟏𝑭𝟐 

𝑭𝟒

                     (𝟏𝟐) 

𝒍𝟏 = ,
     
𝒍 𝟐

=  − 𝟏,   𝒍𝟑 =  + 𝟏 ,     𝒍𝟒 =  + 𝟑, 

𝒍𝟓 = 𝟐, 𝒍𝟔 =  𝟐, 𝒍𝟕 =  𝟗 − 𝟐   

𝒃𝟏 = 𝑨𝟏𝟏,  𝒃𝟐 = 𝑨𝟏𝟐, 𝒂 = 𝟎. 𝟎𝟓𝒎,      
𝑹 = 𝟎. 𝟓𝑴 
𝑭𝟏 =  𝑨𝟏𝟏 + 𝑨𝟏𝟐 =  𝒍𝟏𝒃𝟏 + 𝒃𝟐  
𝑭𝟐 =  𝟑𝑨𝟏𝟏 + 𝑨𝟏𝟐 =  𝟑𝒃𝟏 + 𝒃𝟐  

𝑭𝟒 = 𝒃𝟏𝒍𝟗 𝑹
𝒍𝟓𝑭𝟏 + 𝒂𝒍𝟓𝑭𝟐                                           (𝟏𝟑) 

Stress 𝑁𝑟  and 𝑁𝜃  are obtained using the radial 

displacements obtained from equation (3) with the 

following relations. 

𝑵𝒓 = 𝑨𝟏𝟏

𝒅𝒖

𝒅𝒓
+ 𝑨𝟏𝟐

𝑼

𝑹
                                                   (𝟏𝟒) 

𝑵 = 𝑨𝟏𝟐

𝒅𝒖

𝒅𝒓
+ 𝑨𝟐𝟐

𝑼

𝑹
                                               (𝟏𝟓) 

𝑵𝒓

𝝆𝟐 = 𝑮𝟏𝒓
𝒍𝟐𝑭𝟐 − 𝑮𝟐𝒓

−𝒍𝟑 −
𝒓𝟐𝑭𝟐

𝒃𝟏𝒍𝟗
                            (16) 

𝑮𝟏 =
 𝑹𝒍𝟒𝑭𝟐 + 𝒂𝒍𝟒𝑭𝟑 

𝑭𝟒

                                             (𝟏𝟕) 

𝑮𝟐 =
 𝑹𝒂 𝒍𝟏 𝑹𝒍𝟏𝒂𝟑𝑭𝟏 − 𝑹𝟑𝒂𝒍𝟏𝑭𝟐 

𝑭𝟒

                       (𝟏𝟖) 

𝑵

𝝆𝟐
= 𝑮𝟏𝒓

𝒍𝟐𝑭𝟓 − 𝑮𝟐𝒓
−𝒍𝟑𝑭𝟔 −

𝑨𝟐𝟏𝟑𝒓𝟐

𝑨𝟏𝟏
𝒍𝟕

−
𝒓𝟑

𝒍𝟕
     (𝟏𝟗)      

𝑭𝟓 =  𝑨𝟐𝟏 + 𝑨𝟐𝟐 , 𝑭𝟔 =  𝑨𝟐𝟏 − 𝑨𝟐𝟐 , 

𝑼 = 𝑮𝟏𝒓
 + 𝑮𝟐𝒓

− +
𝒓𝟑

𝒃𝟏 −𝒍𝟕 
                               (𝟐𝟎) 

Fixed boundary condition  

𝑪𝟏 =
𝝆𝟐 𝑹𝜶 − 𝑨𝜶 

𝑭𝟓

                                                 (𝟐𝟏) 

𝑪𝟐 =
𝝆𝟐𝑹𝒂

𝑭𝟓

                                                         (𝟐𝟐) 

𝒃𝟏 =  − 𝟏, 𝒃𝟐 =  + 𝟏, 𝑷 =  𝟗 − 𝟐 , 𝜶 = 𝟑 +  

=  𝑹𝟐 − 𝒂𝟐 ,  =  𝑹𝒂𝟑 − 𝑹𝟑𝒂  

𝑭𝟏 =  𝑨𝟏𝟏 + 𝑨𝟏𝟐 , 𝑭𝟐 =  𝑨𝟏𝟏 − 𝑨𝟏𝟐 ,  𝑭𝟑 =
𝟑𝒓𝟐

𝑷
, 𝑭𝟒

=
𝑨𝟐𝟏𝒓

𝟐

𝑨𝟏𝟏𝑷
, 𝑭𝟓 = 𝑨𝟏𝟏𝝆                (𝟐𝟑) 

Stress 𝑁𝑟  and 𝑁𝜃  are obtained using the radial 

displacements obtained from equation (9) using 

fallowing relations (14) and (15). 
𝑵𝒓

𝝆𝟐
= 𝑫𝟏𝒓

𝒃𝟏𝑭𝟏 − 𝑫𝟐𝒓
−𝒃𝟐𝑭𝟐 − 𝑭𝟑 − 𝑭𝟒              (𝟐𝟒) 

𝑫𝟏 =
 𝑹𝜶 − 𝒂𝜶 

𝑭𝟓

                                                           (𝟐𝟓) 

𝑫𝟐 =
𝑹𝒂

𝑭𝟓

                                                                   (𝟐𝟔) 

𝑵

𝝆𝟐
      = 𝑫𝟏𝒓

𝒃𝟏𝑭𝟏 − 𝑫𝟐𝒓
−𝒃𝟐𝑭𝟐 − 𝑭𝟔  − 𝑭𝟕        (𝟐𝟕)  

𝑭𝟔 =
𝑨𝟐𝟏𝟑𝒓𝟐

𝑨𝟏𝟏𝑷
 , 𝑭𝟕 =

𝒓𝟐

𝑷
                       

𝑼 = 𝑫𝟏𝒓
 + 𝑫𝟐𝒓

− +
𝒓𝟑

𝑨𝟏𝟏 −𝑷 
                               (𝟐𝟖) 

 

5. Results and Discussions 

Stresses and displacements have been 

calculated using above equations for constraint free and 

fixed boundary conditions. These values are also 

calculated using ANSYS. Fig. 3 shows the mesh pattern 

of a rotating disc. The shell linear layered 99 element 

has been used. Fig. 4 and fig. 5 shows the stress and 

displacement patterns for rotating disc. 
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Fig.3 Meshed Model            

 

 
 

Fig. 4 Plot for Usum Radial Displacements 

 

 
 

Fig. 5 Plot for Radial Stress 

 

Five composite materials have been chosen for 

analysis such as (1) Graphite/Epoxy (2) Kevlar/Epoxy 

(3) Boron/Epoxy (4) Boron/Aluminum, and                 

(5) Scs-6/Ti-15-3. The properties of material are shown 

in table 1.  

 

 

Table: 1 Property of Composite Materials 

 

Composite  

Materials 
1E  

(GPa) 

2E  

(GPa) 

12G  

(GPa) 
12υ  fv  

Graphite/Epoxy 138 9 6.9 0.5 0.25 

Kevlar/Epoxy 75.8 5.5 2.3 0.34 0.65 

Boron/ Epoxy 204 18.5 5.59 0.23 0.5 

Boron/Al 227 139 57.6 0.24 0.46 

SCS-6/Ti-15-3 221 145 53.2 0.27 0.39 

 

𝐸1  is longitudinal modulus of composite 

𝐸2  is transverse modulus of composite 

𝐺12  is in-plane shear modulus of composite 

𝜐12  is major poisson’s ratio 

 𝑉𝑓   is volume fraction of fiber 

 Two symmetric laminates are considered for 

the evaluation of stresses and displacements. 

i)  45/−45/−45/45  laminates made out of four 

composite materials and   𝜆2 = 1 

ii)  0/90/90/0  laminates with equal number of 00 

and 900 fiber angle lamina and 𝜆2 = 1 

iii) Laminates with different number of layers 00 and 

900 so that the effect of stiffness ratio can be 

studied with various values of  𝜆2. 

Radial stresses have been graphically 

represented for  45/−45 𝑠laminate with respect to 

variation in radius for constraint free boundary 

condition in Fig. 6 for constraint free boundary 

condition, the radial stresses are zero at the outer radius 

of disc. Radial stresses increases towards the inner 

radius. Maximum radial stress is observed in case of 

Scs- 6/ Ti-15-3 composite material and minimum in 

case of Kevlar/ epoxy material at 𝑟 = 0.05𝑚. At 

𝑟 = 0.2𝑚 Kevlar/ Epoxy shows higher values of radius 

stresses than other composite and beyond 𝑟 = 0.2𝑚 

studiedly decreases to zero at 𝑟 = 0.5𝑚.  

 

 
 

Fig. 6 Radial Stresses for Constraint Free Boundary 

Condition  𝟒𝟓/−𝟒𝟓/−𝟒𝟓/𝟒𝟓  
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For fixed boundary conditions the radial stress 

is tensile and changes to compressive stress in between 

𝑟 =  0.3𝑚 and 𝑟 = 0.4𝑚 as shown in figure 7. 

 

 
 

Fig. 7 Radial Stresses for Fixed Boundary Condition 

 𝟒𝟓/−𝟒𝟓/−𝟒𝟓/𝟒𝟓  
 

Fig.8 shows the radial displacements as a 

function of radial distance for constraint free boundary 

condition. Radial displacement for Kevlar/Epoxy is 

larger than other composites and lowest displacement is 

displayed by graphite/epoxy composite. 

 

 
 

Fig. 8 Radial Displacements for Constraint Free 

Boundary Condition  𝟒𝟓/−𝟒𝟓/−𝟒𝟓/𝟒𝟓  
 

Graphical representations of radial 

displacements as a function of radius are represented in 

Fig. 9 for fixed boundary condition. Radial 

displacements vary from zero at 𝑟 = 0.5m to maximum 

at   𝑟 = 0.3m and finally reaching zero at 𝑟 = 0.5m 

for all composites. The variation of displacements is 

maximum for Kevlar/Epoxy and lower for 

Graphite/Epoxy and very close to Scs- 6/ Ti-15-3. The 

displacements are higher in constraint free boundary 

than in fixed boundary. 

 

 

Cross ply symmetric laminates having layers of 
 0/90 𝑠 are considered for analyzing stress distribution 

and displacements using different materials for 

composites. Radial  stress distribution  as  a  function  of  

 

 
 

Fig. 9 Radial Displacements Fixed boundary 

condition  𝟒𝟓/−𝟒𝟓/−𝟒𝟓/𝟒𝟓  
 

radius is graphically represented in figure 10 for 

constraint free boundary In constraint free boundary 

condition, the radial stresses different materials are 

nearly equal showing maximum at r = 0.05m  and zero 

at r = 0.5m. The trend is depicted as shown in           

figure 10. 

 

 
 

Fig. 10 Radial Stresses for Constraint Free 

Boundary Condition  𝟎/𝟗𝟎/𝟗𝟎/𝟎  
 

Radial stress distribution as a function of radius 

is graphically represented in figure 11 for fixed 

boundary condition; Fig shows Boron /Epoxy showing 

high radial stresses towards inner radius when compared 

to other composite materials and Kevlar/Epoxy showing 

minimum towards inner radius. At r = 0.1 the materials 

Kevlar/Epoxy, Scs-6/Ti-15-3, Boron/Al showing 

maximum stress values.  
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Fig. 11 Radial Stresses for Fixed Boundary 

Condition  𝟎/𝟗𝟎/𝟗𝟎/𝟎  
 

Figure 12 shows the radial displacements as a 

function of radial distance for constraint free boundary 

condition. Boron/Epoxy showing high Radial 

displacement at r = 0.3m at the outer radius Scs-6/Ti-15-

3 is showing higher values. For Kevlar/Epoxy the 

displacement values are very small compared to 

remaining all other materials. Is larger than other 

composites and lowest displacement is displayed by 

graphite/epoxy composite. 

 

 
 

Fig. 12 Radial Displacements for Constraint Free 

Boundary Condition  𝟎/𝟗𝟎/𝟗𝟎/𝟎  
 

Graphical representations of radial 

displacements as a function of radius are represented in 

figure 13 for fixed boundary condition. Radial 

displacements vary from zero at inner radius to 

maximum at the midpoint and finally reaching zero at 

outer radius for all composites. The variation of 

displacements is maximum for Kevlar/Epoxy and lower 

for Graphite/Epoxy and Scs- 6/ Ti-15-3. The 

displacements are higher in constraint free boundary 

than in fixed boundary. 

 
 

Fig. 13 Radial Displacements for Fixed Boundary 

Condition  𝟎/𝟗𝟎/𝟗𝟎/𝟎  
 

6. Conclusions 

i. Effect of centrifugal forces on stresses and 

displacements have been studied for different 

composite laminated rotating discs when the 

stiffness ratio is equal to 1 and ply thickness 

equal to 0.25mm. Two boundary conditions are 

considered:  

a. The outer boundary is free of constraint 

b. The outer boundary is fixed. 

ii. It is observed that Kevlar/Epoxy and Scs-6/Ti-

15-3 composites are significant in terms of radial 

stresses. Kevlar/Epoxy shows higher values of 

stress and Scs-6/Ti-15-3 composite on the lower 

side. 

iii. Cross ply laminated disc has higher values of 

stress than angle ply laminates with 450 fiber 

angle orientation. 

iv. The radial displacements are larger for angle ply 

laminates than for cross ply laminates. 
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