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ABSTRACT 
Acoustic emission (AE) Nondestructive testing was carried out during the hydrostatic 

loading of five identical glass fiber reinforced pressure bottles. The AE data acquired upto 50% of the 

theoretical burst pressure was recorded; the bottles were pressurized till failure. The Amplitude 

frequency distribution of AE data, maximum dilation and fiber strain at various locations were given 

as the inputs and the corresponding burst pressures were given as the targeted output for the 

supervised back propagation neural network. Architecturally 64-16-16-1, net work was able to map 

the patterns present in the AE signals, which lead to the burst failure of the pressure vessels. The 
network trained with the data generated from three bottles of the maximum, minimum and average 

burst pressures was able to predict the burst pressure of the remaining two bottles with a worst case 

prediction error of 3.49 % well within the desired goal of ±5 percent. 
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1. Introduction 

Proof testing of composite pressure vessels is 

complicated by the fact that most composite structures 

do not exhibit the same elastic plastic behavior found in 

metal structures. Excluding macroscopic discontinuities, 
as long as the structure is kept below the yield point, 

there is little plastic deformation, and therefore, no 

noticeable degradation in the structural integrity of 

metal structures. But this does not hold true for 

fiber/matrix composites. Since the fibers are the primary 

load bearing constituents in composites, the structural 

integrity begins to degrade as soon as the fiber begins to 

fail. In a fiber bundle, fiber breakage began to occur at 

less than 20 % of the ultimate load [1]. While different 

structures might begin to experience fiber breakage at a 

higher fraction of the ultimate load, the exponential 

upturn of the number of fiber breaks with increasing 
load is typical of composite structures. This means that 

the common proof testing pressure of 70-80 percent of 

expected failure pressure used on metal design can 

significantly damage a composite structure, thereby 

degrading its structural integrity [2]. To avoid 

significant fiber breakage and the associated structural 

degradation during proof testing, a procedure needs to 

be adopted, that uses a much lower proof loading for 

composites and would also accurately determine the 

ultimate strength of the structure. To understand how 

acoustic emission nondestructive testing can be used to 

predict burst pressures in filament wounded composite 

pressure vessels, some background information on 
Acoustic Emission (AE) must be provided. An AE 

signal is produced by the rapid release of strain energy, 

as discontinuity growth occurs in a material [3]. Energy 

waves are produced and travel outward from the 

discontinuity growth source. Piezoelectric transducers 

are placed on the material to convert the stress waves 

into electric voltage signals which are then used for 

analysis. Some of the characteristics used to quantify 

acoustic emission signals are amplitude, counts, events, 

duration, energy etc. A typical acoustic emission signal 

is a complex, damped, sinusoidal voltage Vs time plot 

as shown in Figure (1). 
An Artificial neural network is an information 

processing system that has certain characteristics similar 

to biological neural networks. A neural network consists 

of large number of simple processing elements called 

neurons or nodes [4]. Each of these neurons is 

connected to other neurons by communication links, 

each with an associated weighting. The weightings 

represent information being used by the network to 

solve a problem. A neuron has many input paths and 
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combines the values of the input paths by a simple 

summation. The summed input is then modified by a 

transfer function and passed directly to the output path 
of the processing element. The output path of the 

processing elements can then be connected to the input 

paths of other nodes through connection weightings. 

Since each connection has a corresponding weighting, 

the signals on the input lines to a processing element are 

modified by these weightings prior to being summed. 

The processing elements are usually organized in to 

groups called layers. Typically a network consists of an 

input layer where data are presented to the network, and 

one output layer which holds the response of the 

network, and one or more hidden layers for processing. 

There are several types of networks, but only the feed 
forward back propagation network was used in this 

research. 

 

Number of counts=4

Duration

ThresholdAmplitude

AE Energy(Envelop)

 

Fig. 1 Acoustic Emission Wave and Parameters 
 

2. Experiment 

Research was conducted with a series of five 

475mm length and 150mm outer diameter filament 

wound composite pressure vessels also known as 

bottles. All the bottles employed E-glass fibers and an 

epoxy resin and were wet wound over a 4mm thick 

polypropylene liner which consists of two aluminum 

alloy end adopters at both the sides. The composite wall 

thickness of 5mm was contributed by 8 helical layers 

(54  ْ  ) and 6 hoop layers (90  ْ  )over the liner as shown 

in Figure(2). 
All the bottles were identical in their geometry 

and the materials they made by. A radiography (X-ray) 

test was conducted on all the bottles to verify the 

uniformity in the thickness of the composite walls, and 

to confirm that all are defect free in their structures. 

Four R15 AE sensors (150 kHz, resonant) were 

mounted over the bottle such that two were at both the 

end domes (fill end, closed end) opposite to each other, 

and the other two at the middle portion of the hoop 

winding in opposite directions. The locations of the later 

two sensors make a 90  ْ  angle with the earlier two, so 

that the entire volume of the bottle was with in the 

vicinity of the sensors. The Hsu-Nielson pencil break 
was carried out to check the functioning of the sensors. 

Preamplifiers were placed in the circuit near the 

transducer and shielded cables were used to eliminate 

electromagnetic interference. The Physical Acoustic 

Corporation (PAC)-DiSP AE work station was 

employed to acquire the signals during pressurizing the 

vessels. The Axial and diametrical dilations of the 

bottles were measured with three linear potentiometers 

(0-10mm range), of which two were mounted at both 

the end adapters (fill and closed) and one at the top 

middle of the diametrical portion of the vessels as 

shown in Figure (3). 
 

 
 

Fig. 2 GFRP Pressure Bottle Sensor Locations 
 

 
 

Fig. 3 Pressure Bottle Experimental Setup 
 

In addition to this, six strain gauges (0-

18000µ€) were bonded at six identical locations of the 

five bottles, such that two were on the (helical winding) 

end domes and four on the (hoop winding) cylindrical 

portion. All of them were connected with a 30 channel 

Data Acquisition System (DAQ) for online monitoring, 
and recording the data during testing. The hydrostatic 

pressure test was carried out on all the five bottles up to 

50% of their theoretical burst pressure100bar (ie, 

designed burst pressure is 200bar) in a cyclic mode as 

follows. 
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Cycle-1: 0 - 50bar (1 minute hold) - 0 

Cycle-2: 0 - 100bar (1 minute hold) – 0 

Cycle-3: 0 – till burst. 
The pressure was brought down to zero after the 100bar 

to facilitate removal of acoustic emission sensors and 

the potentiometers to avoid damage during burst cycle. 

A uniform pressure rate of 20bar/minute was maintained 

on all the cycles and the burst pressures were recorded 

from each bottle. 

 

3. Result and Discussion 

A series of five GFRP pressure bottles were 

pressurized till failure. Acoustic emission (AE) signals 

were acquired from each bottle up to 50% of their 

theoretical burst pressure (100bar). The maximum 

dilation recorded in the three potentiometers (three 

variables) and also the maximum strain measured from 

both the hoop fibers and helical fibers (six variables) 
were taken for further analysis. During proof pressure 

testing, the filament wound composite pressure vessels 

have three primary failure mechanisms: matrix cracking, 

delamination and fiber breaks. The matrix serves to 

protect the fibers, hold them in place, and transmit the 

loads to them. Since the fibers are the primary load 

bearing constituents of the structure, fiber breaks are the 

most critical failure mechanisms in determining the 

burst strength. Matrix cracking and delaminations can 

also occur during hydro proof, changing the expected 

burst pressure of the vessels, but to a lesser extent than 

fiber breaks. Acoustic emission technology has proven 
to be very useful in classifying these failure 

mechanisms, in that each of the mechanisms possesses a 

different acoustic emission signature. These acoustic 

signatures will be used to determine the effect of the 

various failure mechanisms towards the burst pressure. 

It has been demonstrated that the AE data and 

multivariate statistical analysis could be used to predict 

burst pressure in graphite epoxy pressure vessels [5]. 

Later it was shown that the AE data could be used along 

with multivariate statistical analysis in determining 

equations for ultimate strength prediction in ASTM D-
3039 unidirectional graphite epoxy tensile specimens 

[6]. Subsequently, this problem was solved using the 

artificial neural network [7]. Dilation of the bottle 

during proof loading and the strain rate of the fibers are 

significant parameters which are not utilized so far. In 

this research work, together with the amplitude 

frequency data, the maximum dilation and maximum 

strain were also used to generate the neural network 

model to predict the burst pressure of the composite 

pressure vessels.  

  A back propagation neural network model was 

generated with 64 input neurons. The variables of each 

input neuron are given in Table (1).Targeted burst 

pressure is the only neuron in the output layer of the 

network. The network was trained with three data sets 
generated from the bottles for which the high, middle 

and low burst pressures were recorded. Their actual 

burst pressures were given as the targeted output of the 

network. The prediction performance of the network 

was good enough, within the range of the training 

bandwidth. This had been proved earlier with tensile 

specimens [8]; the same was adopted here also. A 

network with a single middle layer consisting of as few 

as 10 processing elements (neurons) to as many as 50 

processing elements was attempted, and it was found to 

be difficult to get the error convergence with this limited 

number (only three) of training data sets. In order to 
overcome this drawback, the number of connection 

links in the network has to be increased, so that the 

number of iterations (cycles) would also be increased 

[9]. One more hidden layer was introduced and the 

training was carried out. The best training results were 

obtained with 64-16-16-1 structured network as shown 

in Figure (4).  

 

Table 1 Input Variable to the Network 

 
Neuron 1 Dilation on fill end of the bottle 
Neuron 2        Dilation on closed end of the bottle 
Neuron 3        Diametrical Dilation at hoop winding 
Neuron 4-9 Strain gauge readings on the fibers 

(hoop and    helical) 
Neuron 10-64 Amplitude frequencies(one neuron for 

each one dB wide amplitude bin from 

46dB to 100dB) 

 

Output 1neuron

16 neurons Hidden layer216 neurons Hidden layer1

64 Input neurons

A97

A98

A99

A100

A47

A46

S(1-6)

D(1-3)

Burst pressure

Bias-3

Bias-2

Bias-1

 
 

Fig. 4 Network Architecture for Prediction 

 

The convergence threshold of 7×10-8 was 
attained at the 35th epoch as shown in Figure (5). The 

comparison plot between the actual and desired output 

of the trained network is given in Figure (6). A 

summary of the neural network training and testing 

parameters is given in Table (2). 
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Table 2: Summery of the Network 

 
Input layers 
Hidden layers 
Output layers 
Neurons in input layer 
Neurons in hidden layer 1 
Neurons in hidden layer 2 
Neurons in output layer 

Bias 
Learning coefficient 
Momentum 
Learning rule 
Transfer function 
Min-Max 
Convergence threshold 
Epoch size 

Input range 
Output range 

1 
2 
1 
64 
16 
16 
1   

Yes 
0.01 
0.9 
Levenberg Marguart algorithm 
Hyperbolic tangent 
yes 
7×10-8 
35 

0 to 3748 
0 to 299.5 
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Fig. 5 Error Convergence at 35th Epoch 
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Fig. 6 Results Comparison of Training Sets 

 

The prediction capability of an optimized 
network was examined by giving only the input data 

(Amplitude frequencies, Dilations, Strain values) of the 

remaining two bottles. Burst pressures, predicted by the 

network and the percentage errors are listed in Table (3). 

The worst case prediction error of 3.497% occurred in 
bottle-5, but was less than the ±5 % error margin. The 

burst pressure prediction of composite pressure bottles 

within the ±5% acceptable error margin was achieved 

with a minimum number (only three) of training data 

sets. The subsequent adding of more data in the training 

set may enable the network to reduce the error margin 

remarkably. 

 

Table 3: Results of the Network 

 

S. 

No 
Specification 

Actual 

burst 

pressure 

(bar) 

Predicte

d burst 

pressure 

(bar) 

Perce

ntage 

error 

1. 

2. 

3. 

4. 

5. 

Bottle-1(training) 

Bottle-2(training) 

Bottle-3(training) 

Bottle-4(test) 

Bottle-5(test) 

263.6 

299.5 

256.0 

260.1 

274.0 

263.5998 

299.4998 

256.0001 

256.3001 

283.5820 

0 

0 

0 

-1.46   

3.497 

 

4. Conclusion 

i. Acoustic emission signals emitted by different 

failure modes of composite pressure vessels 

like matrix crazing, fiber breaks and 

delaminations during hydrostatic proof testing 
were mapped by the two middle layer back 

propagation neural networks and their 

contribution to the overall burst pressure of the 

bottles were saved as the weightings.  

ii. The double hidden layer network was able to 

predict the burst pressure of the GFRP pressure 

bottles within the acceptable error margin 

(±5%) along with the amplitude frequencies 

recorded only upto 50 % of its theoretical burst 

pressure (or) 38% of actual burst pressure; 

however the number of data sets used for 
training was the minimum (only three). 

iii. The dilation of the bottles (axial, diametrical) 

and the strain values measured from the fibers 

(helical, hoop) proved to be valuable inputs for 

the network towards burst pressure prediction; 

those have been overlooked by other 

researchers.  

 It may be possible to proof test composite 

pressure vessels more sophisticatedly (may be 50% of 

theoretical burst pressure) than is being tested currently 

(70% to 80% of the theoretical burst pressure). Thus, the 

unintentional degradation of structural integrity of 
composite pressure vessels while proof testing could be 

minimized. 
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