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ABSTRACT 
 The rising demand for enhanced performance of manufacturing system has led to new 

challenges for the development of complex tool condition monitoring techniques. Estimation of tool 

life generally requires considerable time and relatively expensive. In the present paper, Differential 

Evolution trained Neural Network (DE-NN) has been developed to predict the flank wear in drilling 

operation. In DE-NN, the flank wear prediction problem of a drilling operation has been modeled 
using an NN, whose weights and bias values are optimized offline, using DE. The performance of the 

developed approach has been compared in terms of their prediction accuracy.  
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1. Introduction 

 

 

          

      In the recent past, condition monitoring based 

maintenance philosophy is emerging to be the key 

component in lowering operating costs and increasing 

machine availability. It is important to note that the 

prediction of tool wear plays a very significant role to 

realize a fully automated manufacturing system. Among 

all the manufacturing operations, drilling is one of the 

major machining operation and widely used in the 
manufacturing industries. During drilling operation, 

flank wear can be considered as one of the important 

tool failure criterion and is used to replace the tool. Few 

experimental investigations were made to identify the 

wear of a drill bit. Brinksmeier [1] relied an eddy 

current sensor to measure the in-process torque, which 

is sensitive to tool wear and fracture. Oh et al. [2] 

estimated drilling torque using the spindle motor RMS 

current and controlled the torque through a PID 

controller by manipulating the feed-rate. Moreover, 

Zhang et al. [3] developed a model to predict the flank 
wear, after considering the influence of temperature, 

adhesion and abrasion of the flank wear. However, their 

model did not include the dynamics of the problem. In 

[4], it had been proved that the dynamic components 

have much higher impact on drill wear compared to 

those of the static forces. EI-Wardeny et al. [5] 

performed the condition monitoring of drill utilizing 

vibration signal. They presented a study using the 

kurtosis of the time domain and area under the power 

spectrum to monitor various types of drill wear. 

Few attempts were made to model the drill 

wear using statistical regression analysis. The 

monitoring of tool wear based on current signals of 

spindle motor and feed motor was modeled using 

regression analysis [6]. Moreover, Chowdary and Raju 

[7] proposed a regression model to measure the flank 

wear and corner wear of drill bit in operation. During 

regression analysis, as the models are developed 

independently, the interdependency of the output 

responses might be lost. Hence, it is necessary to think 
of an alternative, which will consider all input 

parameters and responses as an integral system. Few 

researchers have used soft computing-based tools, such 

as Neural Networks (NN), Fuzzy Logic (FL), Genetic 

Algorithms (GA), Differential Evolution (DE) and their 

various combinations to model input-output 

relationships of various manufacturing systems.  

A back propagation neural network (BPNN) 

had been proposed in [8] to predict the tool life in 

drilling, after considering the cutting parameters, 

namely cutting speed, feed and drill diameter. It is also 
important to note that radial basis function network 

(RBFN) was used in [9] to predict the flank wear, and 

compared the result with experimentally obtained data. 

O. Yumak et al. [10] developed FL and NN-FL systems 

to predict tool wear conditions in drilling. Later on 

Panda et al. [11] compared the results of BPNN and 

RBFN in predicting the drill flank wear and observed 

that the performance of former was better than the later. 

It is important to note that back propagation neural 

network utilizes gradient based algorithms to update the 

weights of the NN. Therefore, the chance of the solution 

to struck in the local minima is more. To avoid this 
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problem and to obtain near optimal solution, the weight 
of the NN can be updating using the global optimizers, 

like GA [12], DE and etc. In [13], differential evolution 

trained neural network had been developed to predict 

the drill wear monitoring. However, they did not 

consider the feed and radial vibrations, which are a 

critical measure of drill wear. 

 In the present work, an attempt has been made 

to develop DE trained NN to predict drill flank wear in 

operation. Drill diameter, feed rate, spindle speed, thrust 

force, torque, feed and radial vibrations are considered 

as inputs and drill flank wear has been considered as 

output of the model (that is, NN). The weights and bias 
values of the NN are optimized offline, using DE to 

minimize the Mean Square Error (MSE) in prediction of 

the flank wear. The experimental data available in [11] 

was used to train the NN. 

 The rest of the manuscript is organized as 

follows: Section 2 introduces the experimental details of 

the manufacturing process to be modeled. The proposed 

approach (that is, differential evolution trained NN) is 

explained in Section 3. Results are discussed and 

presented in Section 4. Section 5 provides with the 

concluding remarks of the present study. 
 

2. Experimental Details 

      The detection of flank wear during cutting is 

one of the most crucial considerations. It is important to 
note that the flank wear in drill depends upon drill 

diameter, spindle speed, feed rate along with some other 

derived parameters, such as thrust force, torque and 

vibrations [11]. It is to be noted that the input-output 

data used for modeling have been collected from the 

available literature [11]. The experimental setup used in 

the above literature is shown in Fig. 1. An inverted 

metallurgical microscope was used to measure the drill 

flank wear and the experimental data has been taken 

from the literature [11]. In the above work, the materials 

used for the drill and work piece are High speed steel 
and cast iron, respectively.  

 

3. Differential Evolution Trained Neural 
Network (DE-NN)  

 

The flank wear prediction problem of drilling 

has been modeled using artificial NN. The parameters 
(that is, weights, coefficient of transfer functions and 

bias values) of the NN are optimized using an 

evolutionary algorithm, DE. The schematic diagram 

showing the operation of DE-NN is shown in Fig. 2. As 

the evolutionary algorithms are found to be 

computationally expensive, the DE-based training of 

NN is carried out offline. In the proposed approach, 

coefficient of transfer functions, bias value and the 
connecting weights of the fully connected feed-forward 

NN are optimized. Thus, the optimal NN will be 

evolved by the DE-based training.  

 

 
 

Fig. 1 Schematic Diagram showing the Experimental 

Setup [1]  

 

In the present work, NN has been used to 

model the flank wear prediction of a radial drilling 

machine. Different parameters, such as drill diameter, 

spindle speed, feed rate, thrust force, torque, feed and 

radial vibrations that have influence on flank wear are 

considered as inputs and flank wear is treated as output.  

 

 
 

Fig. 2 Schematic View Showing the Working 

Principle of a DE-NN System  
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Fig. 3 shows a three layered feed-forward NN 
considered in this study. The input layer consists of 

seven neurons corresponding to the seven parameters, 

which influence the drill flank wear. The output layer 

consists of one neuron representing the response to be 

predicted from the network (that is, flank wear). In order 

to bring the various input parameters on to the same 

scale, the data used for training and testing of the 

network are normalized in the range of 0.1 – 0.9 [11] 

using equation (1). 

min

max min

0.1 0.8( )norm

X X
X

X X


 


                               (1) 

where Xnorm is the normal value of a variable, X indicate 

the value before normalization, Xmin and Xmax are the 

minimum and maximum values of the variable, 

respectively. It is important to note that the performance 

of the network is greatly influenced by the topology of 
the network. Therefore, the number of neurons in the 

hidden layer and the transfer functions used in different 

layers of the network are to be carefully determined. 

The information related to the architecture of NN, such 

as the connecting weights [V] and [W], coefficients of 

transfer functions (ct1, ct2, and ct3) and bias value (b1) 

are coded in the DE-string, whereas the NN will 

compute the expected output. Let us assume that the 

hidden layer of the NN consists of M neurons. Then one 

particular population of DE used to represent such a 

network is as follows: 

 

1,1 7,M 1,1 M,1 1 2 3 1V V ct ct ct b

0.8546...0.94210.1154...0.35240.55410.34520.12540.6543
W W

   

Differential evolution is a novel minimization 

method developed by Storn and Prince [14]. It starts 

with an initial population generated at random. The 

dimension of each population (also called as vector) 

depends on the number of parameters involved in the 

optimization. DE starts with a population of fixed 
number (NP) of D-dimensional vectors and the number 

is constant through out the training process of NN. In 

this case, each vector consists of weights of the NN (Vij 

and Wjk), coefficient of transfer functions (ct1, ct2 and 

ct3) and bias values (b1), which need to be optimized. 

The parameters are initialized with random number 

between [0, 1]. The initial solutions of vectors are 

generated using the following formula: 

min max min

, , , ,( ) ,D G D G D G D GX X X X r               (2)        

 

Where X is the variable, Xmax the upper bound, Xmin the 

lower bound of the variable, and r is the uniformly 

distributed random number in the range [0, 1]. The 

population is successively improved by the mutation; 
crossover and selection operators (refer to Fig. 4).  

 

 
 

Fig. 3 Architecture of the Proposed Neural Network  

 

 
 

Fig. 4 Flow Chart Showing Working Principle of 

Differential Evolution  
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The new parameter vectors in the next generation are 
obtained after extracting the distance and direction 

information from the current vectors. Considering Xi, G 

as the target vector in the Gth generation, a 

corresponding donor vector Vi, G+1 is obtained. In the 

present study, “DE/rand/1” mutation scheme has been 

employed to generate the donor vector or mutant vector. 

The expression for generating the donor vector for the 

said mutation scheme is as follows: 

 

, 1 1, 2, 3,( )i G r G r G r GV X F X X                            (3) 

 

  Where F is mutation constant or scaling factor 

in [0, 2], which controls the amplification of difference 

between two individuals, and i, r1, r2, r3 are the index 

of individuals selected randomly and are distinct. The 
crossover operator has been introduced to increase the 

diversity of the mutant vectors. The trail vector Uji, G+1  

is developed from the elements of target vector, Xi, G 

and the elements of the donor vector, Vi, G as follows: 

 

, 1 ,

, 1

,

, ( )
( 1,2,... )

,

ji G j i

ji G

ji G

V if ran CR
U j n

X otherwise






 


      (4) 

 
To determine the member for the next 

generation, the trail vector produced by the crossover 

operator has been compared with the target vector. If the 

trail vector produces a smaller objective functional 

value, it is passed to the next generation otherwise target 

vector is copied in to the next generation. 

 

, 1 , 1 ,

, 1

,

, ( ( ) ( ))
( 1,2,... )

,

i G i G i G

i G

i G

U if f U f X
X i NP

X otherwise

 




 


       (5) 

 

Out of 64 data sets (that is, taken from [11] ), 

54 data sets (training data set) are selected at random are 

used for training of the network, and the remaining 10 

data sets shown in Table 1 are used for testing of the 

network. As a batch mode of training is adopted, the 

whole training set is passed through the NN represented 

by a GA-string. The Mean Square Error (MSE) in 
prediction is used as the fitness of the DA-vector. Thus, 

the fitness F of the DE-vector is calculated like the 

following: 

 

2

1

1 1
( )

2

N

i i

i

F T O
N 

                                                       (6) 

 

Where N represents the number of training 

scenarios, Ti and Oi represents the target and predicted 
outputs, respectively. Mutation, recombination and 

selection continue until some stopping criterion is met. 
Here, the criterion is the number of generations is equal 

to the predefined maximum value. 

 

Table: Input-output Data for Test Cases 

 

S. 

N

o 

Drill 

dia 
(mm) 

Spindle 

speed  
(rpm) 

Feed 

rate 

(mm/

rev) 

Thrust 

Force  
(N) 

Torq

ue 
(Nm) 

Feed 

vibra

tion 
(m/s2) 

Radi

al  

vibra

tion  
(m/s2) 

Flan

k  

wear  
(mm) 

1 9 500 0.13 1088.1 10.67 37.36 39.28 0.1 

2 9 400 0.18 186.4 15.01 29.32 30.48 0.15 

3 9 315 0.36 2778 27.82 17.63 18.4 0.12 

4 10 500 0.18 1504.8 15.11 41.12 42.24 0.12 

5 10 315 0.13 1627.3 15.8 33.27 35.52 0.11 

6 10 250 0.18 1869.7 18.64 22.51 24.24 0.18 

7 11 400 0.25 2538.9 25.42 38.23 39.28 0.15 

8 11 315 0.25 2753.8 27.68 31.58 33.41 0.16 

9 12 500 0.25 1856.3 23.51 54.62 56.24 0.1 

10 12 315 0.25 2612.6 26.21 41.52 43.37 0.21 

 

4. Results and Discussion 

The performance of NN generally depends on 

various parameters, such as number of neurons in the 

hidden layer and type of transfer functions used in each 

layer of NN. The NN is found to have 7 neurons in its 

hidden layer. Moreover, the NN is seen to yield 

minimum MSE with the combination of Tan sigmoid, 
Linear and Log sigmoid transfer functions at input, 

hidden and output layers, respectively. The expressions 

for transfer functions used in different layers of NN are 

as given below: 

   input layer: 
1 1

1 1

ct X ct X

ct X ct X

e e
y

e e









                                (7) 

   hidden layer: y =ct2X                                                (8)   

   output layer: 
3

1

1
ct X

y
e





                                    (9) 

 

After fixing the number of neurons in the 

hidden layer and type of transfer functions, the number 

of DE variables are found to be equal to 60 ((78) + 3 + 

1). The total variables represent connecting weights ([V] 

and [W]), coefficients of transfer functions (ct1, ct2 and 

ct3) and bias value (b1). During training the connecting 

weights, coefficient of transfer functions and bias values 

are varied in the ranges of (-1.0, 1.0), (0.0, 1.0) and (0.0, 

0.000001), respectively. As the performance of DE 

depends on its parameters, namely crossover, mutation 

and number of vectors, a detailed parametric study is 
conducted to determine the optimal parameters (refer to 

Fig. 5).  
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 The optimal values of DE-parameters, such as 
crossover rate, mutation factor and number of 

generations are found to be equal to 0.9, 0.5 and 50, 

respectively. 

 The optimized values of connecting weights 

[Vij] and [Wjk] obtained after DE-based training are as 

follows:  

 

 

 
 

 Moreover, the coefficients of transfer functions 

ct1, ct2, ct3 and bias value b1 are found to be equal to 

0.611, 0.632, 0.562 and 0.00001, respectively. Once the 

offline training is over, the performance of the 

optimized network is tested on 10 test cases given in 

Appendix-A (which are different from the training cases 

and obtained through real experiments conducted by 

S.S. Panda et al. [1]).  

 

(a) Crossover Rate vs Fitness 

 

(b) Mutation Constant vs Fitness 

 

(c) Maximum Number of Generations vs Fitness 

 

Fig. 5 (a-c) Results of Parametric Study to Determine 

the DE Parameters  

 
Fig. 6 shows the comparison of the predicted 

outputs by the DE-trained NN with their respective 
experimental values. It is seen from the scatter plot most 

of the model predicted values are close to the 

experimental values. 

The percentage deviation in prediction of the 

response (that is, flank wear) for 10 test cases are shown 

in Fig. 7. It has been observed from the graph that the 

values of percentage deviation is found to lie in the 

range of (-10.54, 11.98) for the output – flank wear. 

Moreover, the average absolute percentage deviation in 

prediction of flank wear is found to be equal to 9.96. 

Thus the DE-trained NN is found to successfully 
modeled and predicted the flank wear in drilling with a 

reasonably good accuracy for the drilling process. 
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Fig. 6 Results of Parametric Study to Determine the 

DE Parameters  

 

 
Fig. 7 Plot Showing Percentage Deviation in 

Prediction of Flank Wear  
 

5. Conclusions 

In the present paper an attempt is made to 

establish the input-output relationship of drilling process 

using feed forward neural network. Moreover, the 

optimal structure of neural network has been developed 

with the help of a popular global search and 

optimization algorithm, Differential Evolution. It is 

interesting to note that the accuracy in prediction of the 

response is tested for different test cases and found 

reasonably good prediction accuracy for the output. It 
could be due to the combined effect of steady learning 

capability of NN and global optimization feature of DE.  
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