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ABSTRACT 
A new analysis for cold rolling of thin strip and foil is developed. This model follows the 

approach of Fleck et al [8], but relaxes their assumption of a central flat neutral zone. Instead of 

following their inverse method to obtain the pressure distribution in this neutral zone, an explicit 

equation for the contact pressure variation is obtained from the sticking condition in this region. This 

significantly simplifies the solution method, leading to a much more robust algorithm. Moreover, the 

method treats the cases either where the roll retains its circular arc or where there is very significant 

roll deformation in the same way, greatly simplifying the method of obtaining solutions. This will 

facilitate the incorporation of other effects such as the friction models currently being developed. 

Results are in line with the theory of Fleck et al [8]. The effect of entry and exit tensions on the non-

dimensional load and forward slip is investigated. It is found that the effect of equal entry and exit 

tensions is equivalent to reducing the yield stress of the strip by this tension stress.  

Keywords:  Metal rolling process, Thin strip and foil, Pressure distribution. 

1. Introduction

Modelling of thin strip and foil rolling is of 

great interest to industry due to the large tonnage of 

such material consumed each year. Modern set-up and 

control algorithms for rolling mills rely on robust and 

accurate mathematical models of the roll bite which can 

predict key parameters such as load, torque and forward 

slip as a function of the rolling parameters. These 

models either neglect roll deformation or allow for this 

by assuming an increased roll radius, for example using 

the well-known Hitchcock formula [1]. This model is 

improved by Jortner et al [2] to allow for a non-circular 

roll shape. Unfortunately he maintains the assumption 

that there is relative slip between the roll and the strip 

throughout the bite, except at the ‘neutral point’ where 

the relative slip between the roll and strip changes sign. 

These theories are successful in thick strip rolling, but 

unsatisfactory when applied to thin strip where there is 

significant roll elasticity.  

An investigation by Johnson and Bentall [3] 

suggests that the plastic reduction of thin strip between 

two rolls occurs in two zones separated by an extensive 

no-slip neutral zone. In this region the frictional traction 

falls below that for slipping friction. Based on this 

suggestion, a new theory of cold rolling thin foil is 

developed by Fleck and Johnson [4]. This is improved 

in the model of Fleck et al [5]. Here, deformation of the 

rolls is treated by modelling these as elastic half-spaces. 

The contact length is split into a series of zones, 

according to whether the strip is plastic or elastic and 

whether there is slip between the roll and strip. For the 

slipping regions, equilibrium of the strip is used to find 

the variation of pressure with rolling direction. For the 

no-slip neutral zone, which is taken as flat, a matrix 

equation is assembled which relates the elastic roll 

deformation to the normal pressure. This is inverted to 

find the pressure distribution in this region. To meet the 

continuity conditions at the boundaries between each of 

the zones, the positions of these boundaries are found 

using a Newton-Raphson scheme. Theoretical 

predictions for the roll shape in the bite using this model 

are in good agreement with experiments by Sutcliffe and 

Rayner [6]. This model is extended by Yuen and co-

workers [7] to include strain hardening of the strip and 

by Domanti et al [8-9], modelling roll elasticity using 

the influence functions for circular rolls described by 

Jortner [2].  

Although the models described in the previous 

paragraph have gained widespread support, both from 

industrialists and academics, they suffer from two major 

drawbacks. Firstly the principle of separating the bite 

into several zones, for which the boundaries have to be 

solved, is numerically unstable and time-consuming. 

Secondly the nature of the solution (e.g. what zones are 

needed) has to be identified before solving the problem. 

These deficiencies need to be overcome before friction 

modelling, which plays a key role in foil rolling, can be 

successfully coupled into the problem. An alternative 
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strategy which overcomes these difficulties is described 

by Gratacos et al [10], who define a friction law which 

simulates sticking friction in the neutral zone and 

slipping friction elsewhere. This strategy has also been 

used in a recent model which couples tribological and 

mechanical models of foil rolling [1]. The approach 

described in this paper takes its inspiration for 

modelling of the neutral zone from this method, 

although the details of the formulation are quite 

different. Elsewhere the model follows the theory by 

Fleck et al [5]. The theory and numerical scheme are 

described in sections 2 and 3, while results are presented 

in section 4. 

2. Theory 

Most of the theory is taken directly from the 

work by Fleck et al [5]. This is summarised below for 

completeness. The new element for modelling of the 

neutral zone is described in detail in section 2.5. 

2.1. Equilibrium of slab element 
Consider a slab element of the strip, as shown 

in Figure 1(a). Equilibrium gives 

( ) 02 =+++ q
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p
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d
t x 
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where x is the rolling distance, t is the strip 

thickness, averaged through the thickness of the strip, p 

is the interface pressure and q is the shear stress.  

2.2 Roll shape 
The variation of strip thickness t through the 

bite is given by  
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2.3 Elastic slip at entry and exit 
The vertical elastic strain of the strip is given 

by: 
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Since there are no plastic strains in these 

regions, the rate of change of strip thickness due to the 

change in elastic strain in the rolling direction is equal 

to the roll slope dt/dx, giving 
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In practice we can neglect the last term which 

is small compared to the first term on the right hand side 

of the equation, to get: 
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Assuming a Coulomb friction law, the shear 

stress in the slipping elastic entry and exit regions is 

given by 

pq =                 (7) 

where the positive sign is used for the 

backward slip at entry and the negative sign for the 

forward slip at exit. Alternative formulations 

incorporating a limiting shear stress or a friction factor 

approach could straightforwardly be used in the model. 

2.4 Plastic slip 
In the plastic region, a Tresca yield criterion is 

assumed. 
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Substituting this equation into Eq.1 gives 
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In the plastic slip regions, the Coulomb friction 

law, Eq. 8, is again used. 

2.5 Sticking region 
Equations for the change in roll and strip 

strains in the sticking zone can be combined with flow 

continuity for the strip through this zone to derive 

expressions relating the pressure gradient and shear 

stress in this zone to the roll slope here. Results are 

summarised below and described in detail in the 

Appendix. In the plastic no-slip region, the pressure 

gradient and shear stress are given by: 
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For aluminium strip and steel rolls, 
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RS EE  , so that 05.11 =C .  The pressure 

gradient and the shear stress in the elastic unloading 

region are given by: 
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For aluminium strip and steel rolls, 

36.12 =C , 62.03 =C . Comparing these equations 

with equations 11 and 12 for the plastic no-slip region, 

we find that they differ only by having slightly different 

coefficients. Equations 12 and 14 show that the pressure 

gradient is proportional to the roll slope in the sticking 

region. As it happens, this is exactly the form of 

dependence arbitrarily assumed by Sutcliffe and 

Montmitonnet [12] in their model of foil rolling. The 

roll load per unit width is given by 
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The roll torque per unit width is given by 
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3. NUMERICAL IMPLEMENTATION 

As numerical problems associated with solving 

the foil rolling problem present a significant barrier to 

effective implementation, in this section we present a 

step-by-step guide to the solution method used. We cast 

the equations in non-dimensional forms, with the 

independent variables normalised as below: 
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where Ye is an effective yield 

stress, )(5.0 21  +−= Se YY  and 1 and 2 are the 

entry and exit stresses, respectively. The rationale 

behind using this effective yield stress will become clear 

when considering the results, section 4. Other 

parameters are normalised as below: 
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The solution now proceeds as follows: 

We first assume a circular roll arc. An estimate 

must be made of a roll arc length which will exceed the 

actual contact arc, to be used in subsequent roll 

elasticity calculations (item 8),  

The entry point Xa is determined from the roll 

shape, the roll separation and the inlet thickness T1. The 

program starts with an estimate for the neutral point Xn, 

based on a previous iteration where appropriate. 

Integrate the pressure and tension stress 

variation through the bite, with the given deformed roll 

shape and neutral position, as described in steps 4 to 6 

below. The integration starts with the inlet boundary 

conditions P = 0,  = 1. 

In the inlet elastic slip region simultaneously 

integrate the dimensionless forms of equations 6 and 7, 

using a standard variable-step size 2nd/3th Order 

Runge-Kutta scheme [12] 
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The end of the elastic slip region is reached 

when the yield criteria is satisfied, P+=YS/Ye at X = 

Xb. 

To continue the integration first assume that 

plastic slip is occurring, integrating the pressure using 

the dimensionless form of Eq.10: 
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where the slipping friction expression, Eq.8, 

becomes UPQ = . As the integration proceeds, a test 

is carried out to determine whether sticking is occurring, 

in which case an alternative differential equation is used 

as described below. When 
0

dX

dT , the strip is plastic. 

Now if the shear stress Q for sticking, 
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(Eqn. 12), is less than that for slipping, UP , then this is 

a plastic sticking region and the following equation 

should be used:  
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When 0
dX

dT
, then elastic unloading of the 

strip is occurring. Now, where 
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32  is satisfied (using Eqn. 14), 

this is an elastic sticking region and the following 

equation should be used: 
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Since the coefficient C2 in Eq.20 is close to C1 

in Eq.19 and the pressure gradient is small in the elastic 

sticking region, Eq.20 for the plastic sticking region is 

used throughout the sticking region for simplicity 

without significant change in the solution. The end of 

the exit plastic slip region Xc is taken as the position 

where the roll slope is zero, with 0=
dX

dT .  

In the exit elastic slip region equations 17 and 

18, suitably modified to account for the reversed 

direction of slip, are again integrated from Xc. The exit 

position Xd is determined when the normal pressure P 
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falls to zero. A measure of the error in the estimate of 

the neutral point position s is given by the difference 

in the calculated exit tension stress d and the required 

value 2, i.e. 2−= ds  

The neutral position is found using a standard 

solver which uses a combination of bisection, secant and 

inverse quadratic interpolation [13] to adjust the neutral 

position, running through steps 2 to 6 for each value of 

Xn, until s = 0. This typically taking 10 iterations. At 

the end of this step we have solved the pressure 

distribution for a given roll shape. It now remains to 

find a deformed roll shape which is consistent with this 

pressure distribution. 

Recall (item 1) that a roll arc has been 

identified for the elasticity a calculation which 

encompasses the contact arc. The roll elastic 

deformation B(X) is calculated at N nodes located at 

equal intervals C along this arc using the influence 

coefficients given by Fleck et al [5] for an elastic half-

space 
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where  k=i-j.  

The strip thickness T through the bite is then 

given by  BTT n 2)(

0 +=               (22) 

where T0 is the undeformed roll gap shape. 

Interpolation between the roll shape at the node 

positions is performed during the numerical integration 

of the pressure distribution using linear interpolation. 

The roll shape is then updated using a relaxation factor 

e, according to the following expression 
( ) ( ) )(1 1 nn TeeTT −+=+                                          (23)  

Typically, values of e in the range 0.025 to 

0.20 are used, with the smaller values for the more 

severe roll deformation cases. In general the roll shape 

associated with the new solution T(n+1) will not have the 

required exit gauge. Hence, it is necessary to apply 

some rigid body displacement of the rolls. This is done 

by changing the deformed and undeformed roll gap 

shapes by a uniform amount 

t
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where 1TTdt −=  is the error in the exit 

gauge. The same relaxation factor e is used here as for 

the roll shape iteration, Eq.24. 

The whole process, from (2) to (8), is then 

repeated until the roll shape converges, as estimated by 

the criterion  

( ) − )((max nTTabs              (26)  

where a tolerance of =0.01 T1 is typical used. 

This normally takes between 100 to1000 iterations, with 

the more severe cases taking approximately three CPU 

hours on a Sun workstation. 

The non-dimensional roll load per unit width is 

given by 

=
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4. Theoretical results 

Results are presented in two sections. The 

results in section 4.1 confirm that the model agrees with 

that of Fleck et al [5]. In section 4.2 new results are 

presented for the forward slip and for the effects of end 

tensions. 

4.1 Roll shape, contact pressure, load and 
torque. 

For a strip inlet thickness of 0.20mm, the roll 

shape is approximately circular. When the inlet 

thickness is reduced to 0.10mm, the contact pressure 

goes up resulting in some roll deformation, while at an 

inlet gauge of 0.03mm there is a substantial sticking 

region in the middle of the bite which is nearly flat. 

These results reproduce the effects observed by Fleck et 

al [5] for thin foil rolling, including a flat central region, 

a nearly Hertizan pressure distribution and a pressure 

spike just after the neutral zone. Although elastic slip 

regions at entry and exit have been included in the 

analysis, these do not appear to play a significant role. 

Results are in good agreement with those of Fleck et al 

[5].  

4.2 The effect of tensions on roll load and 
forward slip 

The load is only slightly changed where 

unequal tensions are chosen. This demonstrates that the 

effect of equal tensions has been accommodated by 

normalising the relevant parameters using the effective 

yield stress, subtracting off the mean tension stress. 

Although this is a standard procedure in thick strip 

rolling, it is not obvious that the result will hold for thin 

strip rolling. However the result can be understood by 

examining those parts of the governing equations where 

the yield stress or effective yield stress occur, i.e. in 

equations 18 to 21. Due to the small slopes in thin strip 

conditions, the relevant terms in these equations are 

negligible.  

5. CONCLUSIONS 

A new model is presented for cold rolling of 

thin strip and foil. In general the model adopts the 

modelling approach of Fleck et al [5]. However instead 
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of assuming a flat central region and solving the 

pressure distribution in the central neutral zone by 

inverting the elasticity solution for this region, small 

elastic and plastic strains in this central region are 

considered. This leads to an explicit solution for the 

pressure distribution in the central region, resulting in a 

much simpler, faster and more robust numerical 

algorithm. These advantages will facilitate the 

incorporation of additional complications such as a 

more sophisticated friction model. The load and torque 

predicted by this model are in good agreement with 

those of Fleck et al [5]. Parametric studies show that the 

effect of equal tensions is equivalent to reducing the 

yield stress by the value of the tension stress. The model 

predicts an increase in forward slip with increasing exit 

tension or decreasing entry tension, an effect well 

known from industrial practice. 
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