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ABSTRACT 
 In this study, an artificial neural network (ANN) model is created to predict aluminium-

stainless steel explosive clads' tensile and shear strengths. The parameters for the explosive cladding 

process, such as the loading ratio (mass ratio of the explosive and the flyer, 0.6-1.0), standoff distance 

(5-9 mm), preset angle (0°-10°), and groove in the base plate (V/Dovetail), were altered. The ANN 

algorithm was trained in Python using the tensile and shear strengths gathered from 80% of the 

experiments (60), trials, and prior results. The constructed model was evaluated utilizing the 

remaining experimental results. The ANN model successfully predicts the tensile and shear strengths 

with an accuracy of less than 10% deviation from the experimental result.  
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1. Introduction 

The best lightweight constructions for cars and 

aeroplanes are frequently made from multi-material 

assemblies, which has attracted great interest in 

dissimilar metal welding [1]. It is challenging to use 

fusion welding techniques to join different metals that 

create intermetallics; hence solid-state welding 

techniques are looked for [2]. Explosive cladding is a 

solid-state welding technique that leverages plastic 

deformation at high strain rates to form a bond and is 

employed to weld dissimilar metals that have been 

difficult to join using conventional fusion welding 

techniques [3-5]. Most studies on explosive cladding 

concentrated on the mechanical characteristics and 

microstructure of the dissimilar joints [6, 7]. However, 

fewer studies were made on creating a prediction model 

for the mechanical characteristics of dissimilar joints. In 

industrial applications, the joint's mechanical 

characteristics are essential. The many explosive 

cladding factors, such as the loading ratio, standoff 

distance, preset angle, and type of mating surface, affect 

the clad quality, including the tensile, shear, and impact 

strengths, fatigue life, and dynamic response [8, 9]. 

Sivagurumanikandan et al. [10] utilized three factors 

and three levels to evaluate the laser welding of SDSS 

comprehensively, employed the analysis of variance and 

artificial neural network to examine the effects of the 

laser welding parameters on the mechanical property 

and concluded some diverse findings. Despite the 

technique being used for a while, the creation of 

prediction models corresponding to bond formation is 

still not thoroughly investigated. Therefore, this study 

used  experiments   and  an  artificial  neural network  to  

 

 

 

investigate the effects of cladding parameters on Al 

6061-SS304 explosive clads. 

2. Experimental 

Aluminium 6061 sheets with dimensions of 

110 mm x 50 mm x 3 mm and stainless steel 304 plates 

with dimensions of 110 mm x 50 mm x 8 mm were used 

as the flyer and base plates, respectively, in an inclined 

explosive cladding configuration reported elsewhere [4]. 

Before cladding, the dovetail and V-groove were 

machined on the mating surface of the SS 304plates 

along the transverse direction. The distance between the 

two plates was varied from 5 mm to 9 mm, and the 

positioning of the flyer plate with the base plate was 

varied from 5o to 15o. A corner-mounted electric 

detonator was used to set off the chemical explosive 

(density: 1.2 g/cm3, detonation velocity: 4200 m/s), with 

a loading ratio, R (mass ratio between explosive and 

flyer), that ranged from 0.6 to 1.0. Table 1 lists the 

chosen influencing process variables in this study. Sixty 

experiments were performed by altering these 

parameters, detailed elsewhere [11]. 

Following cladding, three tensile test 

specimens (ASTM E8-16 sub-size standard) for each 

condition were made in the detonation direction and 

tested in a universal testing machine (UNITEK-94100). 

Similarly, three shear test specimens (ASTM B 898 

standard) were fabricated for each condition and 

assessed by compressing the various explosive clads.  
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Table 1 Experimental conditions 

 

Parameters Value 

Loading Ratio 0.6,0.8, 1.0 

Standoff distance  (mm) 5,7,9 

Preset angle  (o)   5,10,15 

Type of Groove on the base plate V and Dovetail 

 

3. Building a model using Artificial 
Neural Network 

ANN is a machine learning technology that 

uses data and comprises big, interconnected processing 

units called neurons. It has three layers: an input layer 

that receives data, a hidden layer that processes the data, 

and an output layer (sends computed information). An 

ANN is superior to an empirical model because of these 

layers' ability to learn, memorize, and build a link 

between inputs and outputs [12]. Associated weights are 

adjusted through a learning process to match the actual 

output to provide the targeted output. 

The ANN model was built using four input 

parameters (Table 1), two responses (tensile and shear 

strengths), and one thousand experimental data gathered 

from trial tests and previous findings. The ANN model 

uses a feed-forward network built on a back-propagation 

learning technique. Three optimization methods 

(RMSprop, SDG, and ADAM) were tried to train the 

data; the ADAM algorithm was chosen because of its 

high speed, capability, and resilience [13]. The training 

dataset includes 800 data (80% of the total data), of 

which 200 data (20% of the total data) are used for 

testing. 

Neurons of the input layer receive the 

information from four input variables. The first hidden 

layer receives these data from the input layer. Rectified 

Linear Units (ReLU), nonlinear activation functions, are 

implemented in each layer to reduce error and the 

vanishing point [14]. In the mathematical notation 

shown below, ReLU is expressed [14] 

),0max()( xxf =                               (1) 

The second hidden layer receives the first 

hidden layer's preliminary output. The procedure is 

repeated in the second hidden layer to get the final result 

in the output layer. This unidirectional signal flow in a 

network goes from input to output. The output layer 

creates an error by comparing experimental data and 

predicted data. The Mean Absolute Error (MAE) is 

employed to update the weights and bias of each neuron 

in hidden layers. This process is repeated until the MAE 

is within acceptable limits [15]. The MAE is determined 

using [15] equation 2. 
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The letters Yk, yk, and n represent 

experimental strength, predicted strength, and the total 

number of data, respectively.  

4. Results and discussion 

The experimental loading ratio of 0.8, standoff 

distance of 7 mm, preset angle of 5°, and base plate with 

V grooves produced the maximum tensile (392 MPa) 

and shear (262 MPa) strengths, whereas the lowest 

loading ratio of 0.6, standoff distance of 5 mm, parallel 

arrangement without grooves produced the lowest 

strength (Tensile: 344 MPa, Shear: 220 MPa). 

According to earlier research [16], the lowest strength is 

attributable to the reduced kinetic energy and the 

absence of grooves. On the other hand, a base plate with 

a "V" groove delivers the highest strength (14% higher) 

for the midrange of process parameters. Increased 

kinetic energy consumption and bonding region are the 

reasons for the improvement in strength when using 

grooved base plates. 

4.1. Prediction using artificial neural network 
By altering the number of neurons from 04 to 

1024, one thousand distinct ANN models were created 

for this study. The Optuna optimizer framework 

determines the optimum condition while changing the 

hidden layer's number of neurons and the optimizers 

(Adam, RMSprop, and SGD). By adjusting the 

hyperparameters, the optimal level is attained in the 

region of low target values (Fig. 1), proving that the  

Adam optimizer performs better. 

Fig. 1 Hyperparameters tuning 
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Chandriah and Naraganahalli employed the 

Adam algorithm to forecast the demand for automobile 

spare parts and reported superior performance [17]. Fig. 

2 depicts the ideal ANN structure and the number of 

hidden neurons. 

 

 

Fig. 2 Optimal ANN model 

4.2 Uncertainty  
The 565th ANN model with 543 neurons yields 

the highest R2 value. The prediction performance of the 

best ANN is 0.9628, which means that about 96% of the 

experimental conditions agree with the predicted value 

(Fig.3: shown by the black line). Test data are used to 

validate the prediction accuracy of the constructed ideal 

ANN model. The current ANN model's prediction is 

compatible with the validation dataset with an MAE of 

0.7861, despite the fact that this dataset was not 

employed in building an ideal ANN. According to the 

studies of Awais et al. [18], an MAE of 0.78 is an 

acceptable prediction. Thus, it can be concluded that the 

overall prediction of ANN is appropriate across the 

range of statistical parameters. 

Fig. 3 Comparison of accuracy between experimental 

and ANN 

Conclusions 

  The following conclusion was made in the 

present work.  

 

i. Higher strength was obtained for Al-Steel 

explosive clads with V grooves on the base 

plate at midrange process parameter 

values. 

ii. The ANN model fared better in predicting 

the mechanical strengths of the explosive 

clads, with an MAE of 0.7861 and 

prediction accuracy of 0.9628. 

iii. With all statistical factors taken into 

consideration, the ANN's overall forecast 

is judged to be satisfactory. 
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