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 ABSTRACT 
Denoising is the process of recovering the original signal from the signal corrupted by noise. 

This problem of denoising has been topics of research.The method based on the wavelets have been 

the topic for research. In this paper, multiresolution analysis is applied to de-noise a simulated signal 

and signal obtained from a defective bearing. In this work, the characteristic features of vibration 
signals are extracted from noise Daubechies wavelets. Thresholding is one of the most commonly 

used processing tools in wavelet signal processing for noise removal. The methods used for estimating 

the threshold values are Rigrsure, Sqtwolog, Heusure and minimax. The two versions of thresholding 

a signal which are used to reduce the effect of noise are soft thresholding and hard thresholding. The 

propose technique called the customized thresholding function, is a linear combination of the soft and 

hard thresholding. Comparison of the new method with the existing thresholding methods is provided. 

Simulation results and the application on the actual signal demonstrate the advantage of using this 

method. Signal-to-noise ratio (SNR) and Mean Square Error (MSE) is used for comparing the use of 

wavelets and denoising techniques. 
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1. Introduction  

Early fault detection in bearings will save time 

and reduce the economical loss. The damage in the 

bearing may be due to loading condition, operating 

condition or may be during mounting the bearing. 

Damage of these usually causes the vibration level of 

the system to increase. Early detection of the minor 

damage is more essential. Vibration analysis is one of 

the popular techniques used in the detection of the 
damage. Displacement transducer, velocity pick-up or 

an accelerometer is used to pick–up the signals. Signals 

transmitted not only contain the signals due to 

vibration but also vibrations from the meshing gears 

and the other running parts. Considering the 

environment in which they are generated, vibration 

signals are very noisy. This noise must be removed to 

correctly evaluate the signals. Hence, noise removal 

from the collected signals is an important step in the 

effective fault detection. The reduction of the noise in 

the signals improves the Signal-to-noise (SNR) ratio. 
Wavelet de-noising technique can be used for this 

purpose. 

      The problem of estimating an unknown signal 

embedded in Gaussian noise has received a great deal  

 

of attention in numerous studies. The denoising process 

is used to separate an observed data sequence into a 

“meaningful” signal and a remaining noise. We want 

the recovered signal to be as close as possible to the 

original signal, retaining most of its important 
properties (e.g. smoothness). Traditional denoising 

schemes are based on linear methods, where the most 

common choice is the Wiener filtering. Recently, 

nonlinear methods, especially those based on wavelets 

have become increasingly popular. One of the earliest 

papers published in the field of wavelet-based 

denoising was by Weaver et.al. [1]. In this pioneering 

work, they proposed a new method for filtering noise 

from MR (Magnetic Resonance) images based on the 

hard-thresholding scheme. They showed that by using 

wavelet-thresholding, the noise could be significantly 
reduced without reducing the edge sharpness. The 

advantages of the wavelet denoising scheme presented 

by Weaver, et al. were mainly based on experimental 

results. Donoho and Johnstone proved several 

important theoretical results on wavelet thresholding, 

or wavelet shrinkage [2, 3].  They showed that wavelet 

shrinkage has many excellent properties, such as near 

optimality in minimax sense, and a better rate of 

convergence. Thresholding is one of the steps in 
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wavelet denoising. Reconstructed signal depends upon 
the thresholding level.  

      In this paper, a new thresholding function is 

proposed that can take the place of the traditional 

thresholding functions, such as soft-thresholding and 

hard-thresholding. The results obtained from the 

simulation and the application of this technique on the 

actual signal obtained using the experimental set-up 

show that the proposed method is advantageous and 

helps in improving the denoised results significantly.  

 
2. Wavelet De-Noising  

           The removal of noise from noisy data to 

obtain the signal of interest is often referred to as 

denoising. The method of signal denoising via wavelet 

thresholding was popularized by Dohono et al. [2,3].In 

signal denoising a compromise has to be made between 

noise reduction and preserving significant signal 

details. Wavelet Transform implements both low-pass 

and high-pass filters to the signal. The low-frequency 

parts reflect the signal information, and the high-

frequency parts reflect the noise and the signal details. 

The underlying model for the noisy signal is basically 
of the following form 

 

)()()( ntftS                                                (1) 

 

  Where, time t is equally spaced. In the 

simplest model we suppose that ε(n) is a Gaussian 

white noise with mean 0 and standard deviation σ. The 

de-noising objective is to suppress the noise part of the 

signal S(t) and to recover the signal f(t). The method 
does involve the shrinkage in the wavelet domain 

which results in an overall reduction in size of the 

wavelet coefficients which will reduce the coefficients 

of negligible value to zero. The presence of noise in the 

signal affects all the coefficients regardless of the scale. 

Shrinking them towards zero has the effect of 

suppressing the noise while preserving the initial 

features of the signal.  

Denoising with wavelet consists of three 

steps: [3, 4, 5, 6]. 

 Wavelet Decomposition. Transform the noisy 
data into wavelet domain 

 Wavelet Thresholding. Apply soft or hard 

thresholding to the high-frequency 

coefficients; thereby suppress those 

coefficients smaller than certain amplitude. 

Thresholding to the decomposed high-

frequency coefficients on each level can 

effectively denoise the signal 

 Reconstruction. Transform back into the 

original domain 

      In the whole process, a suiTable wavelet, an 
optimal decomposition level for the hierarchy and one 

appropriate thresholding function should be considered 

(Mallat 1999). But the choice of threshold is the most 

critical. 

 
2.1 Thresholding parameters 

Thresholding reduces the effect of the noise 

without changing the effect of the signal. The 

thresholding is based on a value that is used to compare 

with all the detailed coefficients. Two popular versions 

of thresholding a signal are soft thresholding and hard 

thresholding. The definitions of the two methods of 
thresholding are given below.  

Hard thresholding: The wavelet coefficient is 

retained if its value is more than the threshold value. It 

sets any coefficient less than or equal to the threshold, 

to zero. 
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Soft thresholding: It sets any coefficient less than or 

equal to the threshold to zero. The threshold is 

subtracted from any coefficient that is greater than the 

threshold. This moves the time series toward zero. 
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       Dohono et al. [2,3] introduced the following 

four threshold value determination and are available in 

MATLAB wavelet toolbox [7]. We have considered 

four threshold selection rules: [8, 9] 

Rigrsure: Threshold is selected using the principle of 

Stein’s Unbiased Risk Estimate (SURE), which has a 
quadrature loss function. We get an estimate of the risk 

for a particular threshold value. Minimizing the risks 

gives a selection of the threshold value.  

Sqtwolog: This is a fixed form threshold yielding 

minimax performance multiplied by a small factor 

proportional to log (length(s)), where s = s(x) is the 

signal to be denoised. It is usually equal to sqrt (2* log 

(length (s)) 

Heursure: Threshold is selected using a mixture of the 

first two methods. If the signal-to-noise ratio is very 

small, the SURE estimate is very noisy. So if such a 
situation is detected, the fixed form threshold is used. 

Minimaxi: Threshold is selected using the minimax 

principle. This uses a fixed threshold chosen to yield 

minimax performance for mean squared error against 

an ideal procedure. The minimax principle is used in 
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statistics to design estimators. Since the denoised 
signal can be assimilated to the estimator of the 

unknown regression function, the minimax estimator is 

the option that realizes the minimum, over a given set 

of functions, of the maximum mean squared error. 

 The algorithm of the threshold selection is, 

 

Threshold )(log1829.03936.0 2 n            (4) 

 

3. Simulation  

      A valid signal model is necessary for accurate 

vibration detection. As given in equation (1), a 

vibration waveform is represented as a sinusoid and 

normal distribution white noise (Gaussian noise). 

 

)()()( ntftS                                               (5) 

 

     To better approximate the actual vibration 

environment, the vibration model will be given as, 

 

)()2sin(2)2sin( 21 trandntftfS         (6)  

         

 Where t=0,0.001,0.002,…2 s, f1=25 Hz, 
f2=80 Hz and for this model the vibration signal is 

totally corrupted by additive white noise, represented 

by randn(t). 

      Fig. 1 shows the flow chart for wavelet based 

vibration detection program. The above signal was 

denoised using soft thresholding. Rigrsure (R), 

Sqtwolog(S), Heusure (H) and Minimax (M) methods 

were used to determine the threshold value. SNR and 

Retained Energy are used to compare the methods. 

There are many functions available that can be used as 

a mother wavelet, such as Haar, Daubechies, Meyer 

and Morlet function [10, 11].  
      In this work, the signal is decomposed at level 

5 using some DbN wavelets. Table 1 and Table 2 show 

the SNR values and the retained signal energy at 25%, 

50% and 75% of the threshold value respectively. It is 

clear from the analysis that among the four thresholds 

selection rules used, the Rigrsure (SURE) and 

Minimax are more conservative than others. On the 

basis both SNR and retained energy, Db4 and Db8 give 

a better performance hence further study is based on 

Db8 as mother wavelet. 

 

 

 

 

 

 

 

 

Fig. 1 Flowchart of the Wavelet-Based Vibration Detection Program 

 
 

Table 1: SNR Values at 25%, 50% and 75% of the Threshold Value 

SNR 
25 % 50 % 75 % 

R S H M R S H M R S H M 

Db4 10.249 6.274 7.487 10.043 6.168 2.777 4.629 5.427 4.740 1.474 4.075 3.425 

Db6 9.7010 6.314 7.227 10.065 5.930 2.775 4.204 5.464 4.727 1.512 3.589 3.430 

Db8 10.130 6.318 7.257 10.098 5.923 2.825 4.309 5.429 4.516 1.597 3.781 3.432 

Db10 8.5040 6.415 7.374 10.171 5.116 2.891 4.451 5.551 4.167 1.570 3.829 3.549 

Db11 9.5540 6.407 7.351 10.147 5.785 2.897 4.403 5.551 4.159 1.596 3.805 3.559 

Db12 9.2340 6.337 7.295 10.059 5.463 2.821 4.346 5.480 4.297 1.617 3.852 3.460 

Db13 9.7730 6.332 7.266 10.047 4.722 2.840 4.365 5.476 4.320 1.605 3.861 3.474 

Db14 8.7450 6.353 7.299 10.062 5.128 2.866 4.398 5.503 4.116 1.600 3.880 3.502 
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Table 2: Retained Signal Energy at 25%, 50% and 75% of the Threshold Value 

Retained 

Energy 

25 % 50 % 75% 

R S H M R S H M R S H M 

Db4 71.05 42.06 64.13 60.60 57.39 19.89 53.78 38.20 50.46 10.47 49.16 25.44 

Db6 71.30 41.99 62.50 60.61 59.39 19.64 52.39 38.08 53.92 10.10 49.13 25.17 

Db8 71.77 42.41 63.81 60.83 59.51 20.63 55.00 38.52 54.49 11.05 52.35 26.01 

Db10 67.85 42.97 64.36 61.30 57.04 20.72 55.00 39.05 52.89 11.09 52.01 26.21 

Db11 70.49 43.16 63.79 61.34 58.43 21.00 54.08 39.23 53.03 11.43 50.85 26.45 

Db12 69.60 42.70 63.99 60.94 57.93 20.80 54.79 38.74 53.35 11.40 51.87 26.10 

Db13 70.42 42.70 64.02 60.94 57.88 20.70 54.93 38.74 52.76 11.21 51.99 26.06 

Db14 67.93 42.92 64.08 61.07 56.47 20.90 54.83 38.96 52.14 11.35 51.72 26.28 

 

4. Customized Thresholding 

      The denoising algorithms, which are based on 

thresholding, suggest that each coefficient of every 

detail subband is compared to a threshold level λ and is 

retained if the coefficient is greater than the threshold 

value or equated to zero if it is less the threshold value. 

Fig. 2 indicates the two types of thresholding. 

      The hard type does not affect the coefficients 

that are greater than the threshold level, whereas the 

soft thresholding causes the shrinkage of these 

coefficients. Note that the hard thresholding function is 

discontinuous at x  and due to this function 

yields abrupt artifacts in the denoised signal especially 

when the noise level is significant [6].The above 

disadvantage may be slightly overcome by using the 

customized thresholding function. The function is a 

linear combination of the hard thresholding and the soft 

thresholding function. The functions are expressed as 

Eqn. (7) and Eqn. (8). 

)()()1()( xafxfaxf shc                         (7) 

   

Using Eqn.(2) and Eqn.(3) in Eqn.(7), we can 

write custom thresholding function as, 

 



 


otherwise
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Here, variable ‘a’ decides the shape of the 

function and α is the percentage of the threshold λ 

applied. Fig. 3 depicts the thresholding function for 

different values of a when α =1 and 

λ=1.Also, )()(
0

xfxf h
a
c 


 and  
1

)()(



a

sc xfxf  

which shows that it can also be used for hard and soft 

thresholding.

 

 
Fig. 2 Threshold Types (a) Soft Thresholding (b) Hard Thresholding 
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Fig. 3 Custom Thresholding Function for Different Values of a 

 

5. Results of Customised Thresholding 

           The customized thresholding function was used 

for denoising the above simulated signal. The 

performance parameters SNR, retained signal energy 

and MSE were determined for a= 0.2 to 1.0 at interval 
of 0.2 and the thresholding percentage α= 25%, 50% 

and 75%. a =1 correspond to soft thresholding.  Results  

 

 
 

are obtained using Db8 wavelet and are shown in Tables 

3-5. It is seen that thresholding at a = 0.2 to 0.6and 

using Rigrsure and Minimax method give good results. 

The Fig.4 shows the result of custom thresholding on 

the simulated signal using Rigrsure method (α = 0.7 and     

a = 0.4). 

Table 3: SNR Values using Custom Thresholding 

SNR 
α = 25 % 50 % 75 % 

R S H M R S H M R S H M 

a = 0.2 16.496 11.753 12.106 17.445 9.064 4.999 5.515 10.066 5.726 3.141 4.151 5.916 

a = 0.4 14.983 10.573 11.112 15.531 8.524 4.660 5.345 9.136 5.555 2.915 4.103 5.517 

a = 0.6 13.252 9.123 9.838 13.507 7.750 4.148 5.075 7.927 5.284 2.563 4.024 4.923 

a = 0.8 11.607 7.671 8.516 11.684 6.855 3.519 4.723 6.655 4.931 2.114 3.916 4.027 

a = 1.0 10.130 6.318 7.254 10.098 5.923 2.825 4.309 5.429 4.516 1.597 3.781 3.432 

 

Table 4: Retained Signal Energy Values using Custom Thresholding 

Retained 

 Energy 

25 % 50 % 75 % 

R S H M R S H M R S H M 

a = 0.2 91.55 80.86 86.14 89.64 80.22 56.03 67.34 77.26 68.34 40.56 59.27 62.01 

a = 0.4 85.67 69.17 78.98 81.45 73.40 44.61 63.13 65.22 63.80 30.60 57.11 50.56 

a = 0.6 80.42 58.86 72.87 73.91 67.67 34.91 59.67 54.76 59.98 22.36 55.24 40.71 

a = 0.8 75.78 49.94 62.81 67.04 63.04 26.92 56.96 45.85 56.87 15.84 53.65 32.54 

a = 1.0 71.77 42.41 63.81 60.83 59.51 20.63 55.00 38.52 54.49 11.05 52.35 26.01 

 

Table 5: MSE using Custom Thresholding 

MSE 
25 % 50 % 75 % 

R S H M R S H M R S H M 

a = 0.2 0.045 0.135 0.124 0.036 0.250 0.637 0.566 0.199 0.539 0.978 0.775 0.516 

a = 0.4 0.064 0.177 0.156 0.056 0.283 0.689 0.589 0.246 0.561 1.030 0.783 0.566 

a = 0.6 0.095 0.247 0.209 0.090 0.338 0.775 0.626 0.325 0.597 1.117 0.798 0.649 

a = 0.8 0.139 0.345 0.284 0.137 0.416 0.896 0.679 0.435 0.647 1.239 0.818 0.765 

a = 1.0 0.196 0.471 0.379 0.197 0.515 1.051 0.747 0.577 0.712 1.395 0.844 0.914 
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Fig. 4 Simulated Signal (a) With Noise (b) Denoised using Custom Thresholding 

 
      Now we consider the fault detection in the ball 

bearing. Two bearings, SKF 6305, were tested for 

comparison. One was the normal bearing and the other 

having a defect induced on the outer race. The defect 

was induced using an EDM. An accelerometer was used 

to pick up the signal. The shaft speed was 1400 rpm and 

the bearing is subjected to a load of 1.5 KN. Each 

bearing has 7 balls, ball diameter = 11.5 mm, pitch 

diameter= 43.5 mm and contact angle =0 (assumed). 
Fig.5 and Fig. 6 show the actual and the denoised 

vibration signal of normal bearing and defective bearing 

respectively. Both the stages can be easily distinguished. 

The characteristic defect frequency is found to be    

60.07 Hz and the period is 0.0166 seconds. The period 

was identified approximately as 0.018 seconds.    

 

6. Conclusion 

           It is seen from the results that the custom 

thresholding proposed in this paper outperforms the 

traditional soft thresholding schemes and hence can be 

used as one of the methods for denoising. The 

advantage of this function is the shape of the 

thresholding function and the percentage of thresholding 

can be adapted to the characteristics of the given signal, 

resulting in a smaller estimation error.  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  5 Signal from Normal Bearing (a) Original (b) Denoised 
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Nomenclature 

Symbol Description Units 

a 
Factor that decides the shape of 

the function 
 

f(t) Original signal  

f1,f2 Frequency Hz 

t Time s 

S(t) Noisy Signal  

x Value of wavelet coefficient  

α percentage of the threshold  

 Standard Deviation of noise  

 Threshold value  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Signal from Ball Bearing with Outer Race Damaged (a) Original (b) Denoised 
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