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ABSTRACT 
Selection of optimum parameters in work roll grinding mainly relies on the experience and 

expertise of individuals working in grinding industries. Systematic knowledge accumulation regarding the 
manufacturing process is essential in order to obtain optimal process conditions. It is not safe a priori to 

presume that rules of thumb, which are widely used on the shop floor, always lead to fast production and 

to increased productivity. Thus, neural network Meta models are suggested in this work in order to 

generalize from examples connecting input process parameters, such as wheel speed work speed, in-feed, 

Traverse speed, dress depth and dress lead. These examples or knowledge are gathered from experiments 

from industrial practice, which are designed systematically using orthogonal arrays (DOE). Neural 

network model thus developed yields a more accurate process than the regression method. Furthermore, 

they can be employed in the fitness function of a genetic algorithm that can optimize the grinding 

conditions. 

 

1. Introduction  
Process Modeling and optimization are very 

important issues in manufacturing engineering. 

Machining process are usually too complicated to 

warrant appropriate analytical models and most of the 

time, analytical models developed based on many 

assumptions which contradict reality. Therefore, 

empric process models are often obtained, but strictly 
speaking, empric models are applicable only within the 

range for which the models were initially established. 

More importantly, it is sometimes difficult to adjust the 

parameters of the above-mentioned models on-line 

according to the actual situation of the machining 

process. The operations of machining process thus still 

rely heavily on human operators.  

 

Matasushima and Sata (1) first suggested a 

hierarchical structure of intelligent machine tool 

controllers to emulate human operators. Recently, 
neural networks have become more and more 

important as an intelligence technique in pattern 

recognition areas (2, 3). Chryssolouris and Guillot (4) 

evaluated different process modeling techniques and 

concluded that a proper neural network model could 

best estimate state variables.Rangwala and Doenfield 

(5) started suing neural networks in order to learn and 

optimize turning processes. The aim of this paper is to 

show how work roll grinding processes can be modeled 

by using DoE and back propagation neural networks. 

 

2. Objective   
This study was made on grinding of the work 

rolls used in the cold rolling Sendzimir mills. Optimal 

setting of machining parameters is an essential issue in 

the roll grinding machine, because it permit to assure a 

correct precision and a good surface roughness of the 

work rolls which is made of D2 steel. Since the work 

rolls were used in pairs, all the work rolls should be 

ground to obtain a minimum surface roughness. To 

obtain a minimum surface roughness consistently the 
optimal settings of the factors should be identified. In 

this present study, an investigation has made to study 

the effect of various grinding parameters on surface 

finish on work rolls and grinding power required in roll 

grinding machine using Neural Network Model and 

Design of Experiment. Parameters such as wheel 

speed, work speed, traverse speed, in-feed, dress depth 

and dress lead were used in the respective models. 

These models were then used to find the optimum 

process parameters. 

3. Methodology Description 
 A lot of attempts have been made to describe more 

effectively and adequately the grinding process.  

 

A brief description of this approach on roll 

grinding of work rolls made of D2 steel and its results 

is presented in this work.  
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Although the best parameter setup in the factorial 

design combinations can be successfully identified by 

applying the Taguchi method, the real optimal values in the 

completed explored region cannot be guaranteed by 

Pignatiello (6).To overcome this shortcoming, a new 

approach for planning a design of experiment, a neural 

network, was proposed. In terms of the training on the data 

set used in the Taguchi analyses, a neural network was 

constructed. Several extra experimental results which were 
not included in the orthogonal array were included and used 

to test the constructed network model. The strong 

functional mapping capability of the neural network model 

does provide a feature in which neural nets and traditional 

experimental design methods can be combined to make a 

new and more effective experimental design methodology. 

Experimental data based on the DoE provide training for 

constructing neural network Meta models and can be easily 

used in optimizing process parameter values through 

embedding into the fitness function of an appropriate 

genetic algorithm. 

 

4. Design of Experiments (DoE)  
 

Design of experiments is a procedure to 

systematically organize experiment runs in order to 

improve processes in the most effective way. DoE 

involves a fraction of the possible parameter 

combinations for a given experiment, which result in 

conducting a minimum number of experiments without 

loss of significant information. This combination 

fraction is chosen according to rules and statistic 

matrices called Taguchi’s orthogonal array (OAs). The 

DoE procedure can be divided into three stages:  

 
experiment design, experiment running and statistical 

analysis. Experimental design involves the choice of 

process parameters and parameter levels, determining 

parameter interactions as well as the choice of the 

appropriate OA according to desired resolution. The 

chosen OA defines the number of experiments to 

conduct and parameter level values, which are carried 

out in second stage of DoE. During the third stage, 

analysis of variance (ANOVA) determines which 

parameters are statistically important along with their 

influence in the process. Since a non-linear 
characteristic exists among the parameters in the 

grinding process, the L27 orthogonal array was utilized 

to provide a sufficient degree of freedom. There are six 

controllable factors were considered to study their effect 

on surface roughness. 

 

 
4.1. Experiment Details 

         
  The experiment includes six controllable 

process parameters with three levels were used as 

shown in Table-1.Grinding experiments were 

conducted on an SHIBAURA semi-automatic roll 

grinding machine. The diameter of the work rolls is 

between 68-56mm and length of 1.53 meter made of 

D2 forged steel with hardness of Rc 60.Grinding wheel 

is made of green silicon carbide with grit size of 120 
microns. The diameter of grinding wheel was 610mm 

and the width 76mm.The Diamond point tool tip was 

used for dressing the grinding wheel for each trial of 

Experiment. 

The surface roughness measurement was 

carried by using Taylor-Hobson surface roughness 

measuring instrument with cut off length of 0.8mm 

.The measurement was taken at four different locations 

of work roll and considered the average roughness 

value to find out Signal to noise(S/N) ratio. A digital 

clamp power meter (DCPM) is used to take the 
measurement of power requirement at grinding wheel 

spindle. 

Table 1: Factors and their levels. 

 

 

Sl.No. Factors Levels 

Low 

(-1) 

Middle 

(0) 

High 

(+) 

01 

Wheel 

Speed in 

rpm 

400 450 500 

02 

Work 

Speed in 

rpm 

100 110 120 

03 

Traverse 

Speed in 

m/min 

0.5 1.0 1.5 

04 
Infeed in 

micron 
10 15 20 

05 

Dress 

Depth in 

Microns 

10 15 20 

06 

Dress 

lead in 
m/min 

0.1 0.15 0.2 
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    n 

5. Utilizing Taguchi Experimental 
design 

The Taguchi L27 orthogonal array was used as 

the inner array to design the data collection plan as 

shown in Table.2.The signal to noise ratio is used as 

the response of interest. There is a signal response, 

calculated on three observations, at each of the 27 inner 

array experimental design points. This response (Ra) is  

 

calculated over the four points in the inner array. Since 

the surface roughness values are a “Smaller- is – best” 

variable type. In order to find out the most important 

influencing factors on mean response for the “Smaller– 

is – best “ type, the surface roughness needs to be 

calculated as follows,   

 

 

                                       S/Ns = - 10 log  1/n     Yi
2  ]          --- (1) 

 
Where                       

     Yi  =  Average Surface roughness of the trails. 

Table-2 shows the details of L27 Orthogonal array experiments and its responses. 

 
Table 2: L27 Orthogonal Array Experimental Trails and its responses 

 
S. 

No. 

Ws 

rpm 

Js 

rpm 

Ts 

m/ 

min 

 d 

µm 

Dp 

µm 

Ds 

m/ 

min 

Ra 

µm 

S/N 

 

P 

kw 
S/N 

01 
02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 
13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 
25 

26 

27 

 

400 
400 

400 

400 

400 

400 

400 

400 

400 

450 

450 

450 
450 

450 

450 

450 

450 

450 

500 

500 

500 

500 

500 

500 
500 

500 

500 

100 
100 

100 

110 

110 

110 

120 

120 

120 

100 

100 

100 
110 

110 

110 

120 

120 

120 

100 

100 

100 

110 

110 

110 
120 

120 

120 

0.5 
0.5 

0.5 

1.0 

1.0 

1.0 

1.5 

1.5 

1.5 

1.0 

1.0 

1.0 
1.5 

1.5 

1.5 

0.5 

0.5 

0.5 

1.5 

1.5 

1.5 

0.5 

0.5 

0.5 
1.0 

1.0 

1.0 

10 
10 

10 

15 

15 

15 

20 

20 

20 

20 

20 

20 
10 

10 

10 

15 

15 

15 

15 

15 

15 

20 

20 

20 
10 

10 

10 

10 
15 

20 

10 

15 

20 

10 

15 

20 

10 

15 

20 
10 

15 

20 

10 

15 

20 

10 

15 

20 

10 

15 

20 
10 

15 

20 

0.10 
0.15 

0.20 

0.10 

0.15 

0.20 

0.10 

0.15 

0.20 

0.15 

0.20 

0.10 
0.15 

0.20 

0.10 

0.15 

0.20 

0.10 

0.20 

0.10 

0.15 

0.20 

0.10 

0.15 
0.20 

0.10 

0.15 

0.0756 
0.0730 

0.0723 

0.0740 

0.0780 

0.0763 

0.0826 

0.0820 

0.0780 

0.0743 

0.0750 

0.0690 
0.0746 

0.0690 

0.0710 

0.07100

.0696 

0.0670 

0.0703 

0.0660 

0.0676 

0.0620 

0.0610 

0.0626 
0.0616 

0.0630 

0.0593 

22.421 
22.733 

22.813 

22.613 

22.156 

22.345 

21.653 

21.722 

22.156 

22.576 

22.498 

23.222 
22.537 

23.222 

22.974 

22.974 

23.138 

23.477 

23.056 

23.608 

23.392 

24.151 

24.292 

24.059 
24.198 

24.012 

24.533 

3.10 
3.20 

2.95 

2.80 

2.72 

2.68 

2.74 

2.80 

2.86 

2.94 

3.02 

2.56 
2.68 

2.73 

2.84 

2.70 

2.69 

2.78 

3.08 

3.10 

3.12 

3.20 

3.35 

3.40 
3.18 

3.15 

3.12 

 

-9.827 
-10.103 

-9.396 

-8.943 

-8.691 

-8.562 

-8.755 

-8.943 

-9.127 

-9.366 

-9.600 

-8.164 
-8.562 

-8.723 

-9.066 

-8.627 

-8.599 

-8.569 

-9.771 

-9.827 

-9.883 

-10.103 

-10.500 

-10.629 
-10.048 

-9.966 

-9.883 

 

5.1 ANOVA 
Table.3 and 4 represents the Analysis of 

Variance (ANOVA) table for responses Surface 

roughness and Power required for grinding. From the 

ANOVA Tables, Wheel Speed contribute more on 

i =1 



Journal of Manufacturing Engineering, 2009, Vol.4, Issue.1 

 © SME 

 

   

48 

influencing the surface roughness and grinding power 

required followed by Traverse Speed, In-feed and 

Work Speed 

 

Table 3: ANOVA Table for Surface Finis 

 

Factors 

 

 

DF SS MS 
F-

value 

 

P.S. 

Wheel 

Speed 
 

Work 

 Speed 

 

Traverse 

Speed 

 

Infeed 

 

Dress  

Depth 
 

Dress 

 Lead 

 

Error 

 

 

2 

 
 

2 

 

 

2 

 

 

2 

 

2 

 
 

2 

 

 

14 

0.000785 

 
 

0.0000122 

 

 

0.0001265 

 

 

0.0000440 

 

0.0000296 

 
 

0.0000101 

 

 

0.0000516 

0.0003912 

 
 

0.0000061 

 

 

0.0000633 

 

 

0.0000220 

 

0.0000148 

 
 

0.0000051 

 

 

0.0000037 

106.12 

 
 

1.65 

 

 

17.16 

 

 

5.96 

 

4.02 

 
 

1.37 

 

 

- 

0.0001 

 
 

0.228 

 

 

0.0001 

 

 

0.010 

 

0.042 

 
 

0.287 

 

 

    - 

Total 26 0.0010565    

 

6. Neural network Model 
 

Neural Networks have been found to be a 

good alternative to traditional analytical techniques, for 

modeling of complex manufacturing process. This is 
because of the number of process variables involved 

and the non-linear nature of the problems. If a process 

can be realistically modeled, the model may be 

experimented upon to explore the process behaviour. A 

Neural network consists of a number of simple, highly 

interconnected processing elements or nodes and is a 

computational algorithm that processes information by 

dynamic response of its processing elements and their 

connections to external inputs. Back propagation neural 

network consists of three or more layers including an 

input, one or more hidden layers, and an output layer. 
The network investigated in this paper is illustrated in 

Figure.1.To develop a back propagation neural network 

model for surface roughness in work rolls, training and 

testing data are collected. The data sets consist of both 

the input parameters and the resulting output parameter. 

The back propagation learning algorithm employs a 

gradient or steepest-descent heuristic that enables a  

 
Table 4: ANOVA Table for Grinding Power Required 

 

 

network to self-organization in ways that improves its 

performance over time. The network first uses the input 

data set to produce its own output. This forward pass 

through the back 

 

 

 
 

 

 

 

 

 

 

 

 

 

           Y= f (W.p+b) 
Fig 1  Mathematical model of a typical model 

 

6.1 Training and Testing of the neural  
     network model 
To train the developed networks, encoded values for 

the selected parameters and the means of three 

performance measures listed in the Table-1 served as 

inputs and outputs values for neural model. In this 

work, training function selected based on the 

Lavenberg-Marquardt Algorithm to update the weights 

and bias. In this study, the ‘tansigmoid ‘transfer 

function is used for hidden layers and the ‘pureline’ 
transfer function is used for the output layer. Ten 

additional experiments, each with a different 

controllable factor levels setup based on the significant 

factor found in the ANOVA table were used for model 

testing. Table .5 summarizes these complete values. 

 

The training and testing MSEs of the neural network 

model for varying combinations of the number hidden 

nodes and learning rates are performed using 

MATLAB environment are summarized in the 

Factors DF SS MS F-Value P.S 

Ws 2 0.188 0.094 70.21 0.183 

Js 2 0.015 0.0076 8.08 0.013 

Ts 2 0.010 0.005 5.03 0.005 

I 2 0.057 0.028 21.38 0.052 

Dp 2 0.006 0.0030 1.219 0.001 

Dl 2 0.0084 0.0042 1.70 0.003 

Error 14 0.0345 0.00246   

Total 26 0.319    

Σ f 

P

1

1

1 

P

2 
P

3 

P

5 

P

6 

b 

I 

W

1

.

6 

W

1.

1 
W

1.

2 
W

1.

3 W
1.

4 W

1

.

5 

Y 
P

4 
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Table.6.The convergence criteria employed in network 

training was a mean square error less than or equal 

to10-6 or a maximum of 10000 iterations. It is observed 

that the 6-6-1 network with a learning rate of 0.07 

provides the most precise forecasting results with 

lowest MSEs. It is noted that the built neural network 

model provides high 

precision forecasting. The results show that 

the network performed good generalization ability and 
presented more opportunities for identifying the real 

optimal parameter setup. The excellent generalization 

ability of the network model is clearly apparent. 

 

Table 5: Testing Experimental Data 

 

7. Optimization of work rolls grinding   
    using Genetic Algorithm 

 GA form a class of adaptive heuristics based 

on principles 
 
Table 6: Forecasting results for the performance 

Measures 

 

No. of  

nodes at 

 Hidden  

Layer 

Learni

ng  

rate 

MSE- 

Training  

data 

MSE –  

Testing  

data 

 

 

04 

 

0.05 

0.06 

0.07 

0.08 

0.09 

1.00 

9.87x10-07 

8.55x10-07 

9.91x10-07 

9.99x10-07 

9.87x10-07 

1.75x10-06 

7.58x10-07 

9.87x10-07 

9.99x10-07 

6.53x10-07 

8.54x10-07 

9.45x10-07 

 

 

 

05 

 

0.05 

0.06 

0.07 

0.08 

0.09 

1.00 

9.63x10-07 

9.73x10-07 

1.02x10-06 

9.93x10-07 

9.44x10-07 

9.95x10-07 

5.72x10-07 

9.00x10-07 

1.89x10-06 

5.67x10-07 

5.05x10-07 

9.87x10-07 

 
 

06 

 

0.05 
0.06 

0.07 

0.08 

0.09 

1.00 

 

9.75x10-07 

8.075x10-

07 

5.64x10-07 

9.96x10-07 

9.87x10-07 

7.92x10-07 

 

2.83x10-07 

3.86x10-07 

9.45x10-09 

8.52x10-07 

6.15x10-07 

8.8x10-07 

 

 

 

07 

0.05 

0.06 

0.07 

0.08 

0.09 
1.00 

 

9.75x10-07 

8.67x10-07 

9.98x10-07 

5.73x10-07 

8.97x10-07 

9.53x10-07 

 

7.65x10-07 

9.75x10-07 

1.45x10-07 

4.42x10-07 

9.55x10-07 

9.80x10-07 

 

 

 

 
       derived from the dynamics of natural population 

genetics. The searching process simulates the natural 

evolution of biological creatures and turns out to be an 
intelligent exploitation of a random search. The mechanics 

of GA is simple, involving copying of the binary strings. 

GA comprises of three basic operators, i.e., the 

reproduction operator selects good strings, crossover 

operator recombines good sub strings from good strings 

together to form s better sub string and the mutation 

operator further alters the string locally to create a string 

which is found to be better. [D.E.Goldberg, 1989].A simple 

Genetic Algorithm adopted here is illustrated as, 

 

Begin 

Initialize population; 

Evaluate population; 

Repeat 

Reproduction; 

Crossover; 

Mutation; 

Evaluate population; 

Until (termination criteria); 

End. 
 

Ws 

rpm 

Js 

rpm 

Ts 

m/min 

  d 

micron 

Dp 

micron 

Ds 

m/min 

    Ra 

micron 

P 

Kw 

400 100 0.5 10 10 0.1 0.080 2.30 

430 110 1.0 10 10 0.15 0.076 2.65 

450 120 1.5 15 15 0.2 0.077 2.70 

470 100 1.0 15 20 0.1 0.063 3.10 

500 110 1.5 20 20 0.15 0.081 3.25 

400 120 0.5 20 15 0.2 0.078 2.50 

430 100 1.0 10 10 0.1 0.073 2.40 

450 110 1.0 10 15 0.2 0.061 2.60 

470 120 0.5 15 20 0.15 0.063 2.80 

500 100 1.5 20 15 0.1 0.070 3.15 
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7.1 Defining Optimization Criteria 
 
 One of the main steps in GA optimization 

methodology involves setting appropriate criteria for 

the optimization, i.e., the objective function. Usually, 

an objective function is presented in analytical form as 

a function of input parameters. In the approach 

followed in the present work, trained ANNs play the 

role of this function, aiming at finding grinding 

parameter values that offer minimum surface finish 

with less grinding power required. These two 
requirements lead to increased productivity and 

improved quality. Ten-bit strings were used for 

variable coding according to their minimum and 

maximum values. Coding from real numbers to binary 

strings as well as manipulation of values in either form 

is carried out with regard to the variable limits. 

Moreover, each variable participates in the 

chromosome with the same number of bits. The 

population was chosen to have 50 chromosomes and 

the maximum number of generations was 200. The 

generation gap, which determines the number of new 
chromosomes to be inserted in the new generations, 

was set to 80% of the population size. 

 

 
7.2 Objective Function 
 
The objective function was formulated according to the 
optimization criteria such as minimum surface 

roughness and grinding power required. 

 

(f X) = W1*net1(X) + W2*net2(X)             (2) 

 

Where X is a 6 x 1 array holding grinding parameter 

values, 

           net1(X) is the output value of the ANN model 
for surface finish 

  net2(X) is the output value of the ANN 

model for grinding power required 

 
7.3 Genetic Operators 

            Stochastic universal sampling was 

implemented for chromosome selection in the GA, 

with a 70% single point crossover rate and 2.5% 

population mutation rate. These choices were made 

after a necessary number of GA runs and proven to 

lead to the best GA performance for the present case. 

The best chromosome per generation is depicted in 

Figure.2 for the case giving equal weight age to both 

surface finish and grinding power required. It is 

obvious that convergence is achieved approximately in 

the 225the generation. The objective function value for 

the optimal chromosome is f(x) =2.74, which is very 

near the lower boundary of the objective function value 
field. After decoding the binary chromosomes back to 

real parameter values, the optimal process parameter 

values for work roll grinding are obtained is presented 

in the Table.8.Confirmation trails were carried out and 

its results are  almost matched with optimized results 

obtained using GA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Objective function for the best chromosome 

in each generation 
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Table 8: Optimum grinding parameters and its simulated result 

 
 
 
 
 
 
 
 
 

 

8. Discussions and Conclusion 

 
 Despite the fact that the developed 

methodology involves many stages and different tolls, 

its basic idea and goal is that how grinding parameters 

of work roll grinding can be determined in optimum 

way. As for the methodology of optimization of 

grinding conditions, current practice involve the 

empirical selection of those parameters, general rules 
of thumb and the specific know-how of each company. 

DoE methodology radically reduces the number of 

necessary execution runs. If ANN accuracy is deemed 

unsatisfactory, the number of levels in each parameter 

may be increased as a first measure – additional 

measures being consideration of sensitivity analysis in 

order to distribute sample points more correctly in the 

parameter space, etc., 
 As far as optimization criteria 

concerned, the responses given considered both the 

surface finish and grinding power required. The GA 

used a weighted objective function incorporating the 

ANN models and succeeded in finding the optimum 
values with little tuning of its parameters, referring 

mainly to the genetic operators and less the coding of 

the variables. In this paper, we have shown that ANN 

can be a better machining process modeling tool. When 

integrated with Genetic algorithm, ANN can also be 

very effective in optimizing the grinding processes.  
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Ws 

rpm 

Js 

rpm 

Ts 

m/ 

min 

 d 

µm 

Dp 

µm 

Ds 

m/ 

min 

Ra 

µm 

P 

kw 

Using 

ANN 

and 

GA 

Exp. 

results 

Using 

ANN 

and GA 

Exp. 

results 

440 110 1.5 15 15 0.2 0.070 0.070 2.71 2.72 
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