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ABSTRACT 
  

The present investigation studies the influence of fiber-matrix interface debond on the micromechanical behaviour of 

fiber reinforced composite lamina. Three dimensional finite element models have been developed from the 

representative volume elements of the composite which are in the form of square unit cells. Mechanical properties are 

determined for three different values of fiber volume fraction (Vf ). The finite element software NISA has been 

successfully executed to evaluate the properties. The results of the present analysis are in close agreement with solutions 

available in the literature for perfectly bonding as well as complete debond at fiber-matrix interface. The method is 

extended to analyse the cases where debond exists along the length of the fiber and extends around the circumference at 

the interface of the fiber and matrix. The debond effect on the mechanical properties is discussed. 
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1. INTRODUCTION  
 

Fiber reinforced composites can be tailor made, as 

their properties can be controlled by the appropriate 

selection of the substrata parameters such as fiber 

orientation, volume fraction, fiber spacing, and layer 

sequence. The required directional properties can be 

achieved in the case of fiber reinforced composites by 

properly selecting various parameters enlisted above. As 

a result of this, the designer can have a tailor-made 

material with the desired properties. Such a material 

design reduces the weight and improves the performance 

of the composite. For example, the carbon-carbon 

composites are strong in the direction of the fiber 

reinforcement but weak in the other directions. Deteresa 

[1] observed that the mismatch in the thermoelastic 

properties between fiber and matrix (especially in 

kevlar-epoxy composites) results in significant thermal 

stresses with cool down from processing temperatures. 

This in turn severely limits the compressive and flexural 

fatigue strength of the composites. 

Elastic constants of fiber reinforced composites 

with various types of constituents were determined by 

Chen and Chang [2], Hashin & Rosen [3], Hashin [4] 

and Whitney [5]. It is clear from the above comparison 

that four of the five independent composite moduli 

differ only in their expressions for the fifth elastic 

constant i.e., transverse shear modulus, which varies 

between two bounds that are reasonably close for the 

cases of practical interest. The values of elastic moduli 

presented by Hashin and Rosen [3] have very close 

bounds. Dean and Turner [6] demonstrated that most of 

the transversely isotropic graphite-fiber properties can 

be extrapolated by curve fitting of the ultrasonic test 

results. Kirz and Stinchcomb [7] modified the 

methodology adopted by Dean and Turner [6]. They 

calculated the complete set of elastic constants for 

graphite-epoxy composite lamina given by Hashin [4] by 

using the improved ultrasonic velocity measurements. 

These are in very good agreement with the equations 

derived by Hashin [8]. Kirz and Stinchcomb [7] 

observed that the modified equations of Hashin [8] can 

be used to evaluate the complete set of elastic properties 

for the transversely isotropic laminae. 

Ishikawa et al. [9] experimentally obtained all the 

independent elastic moduli of unidirectional carbon-
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epoxy composites with the tensile and torsional tests of 

co-axis and off-axis specimens. They confirmed the 

transverse isotropy nature of the graphite-epoxy 

composites. Hashin [10] derived the expressions and 

bounds for the five effective elastic moduli of an 

unidirectional fiber composite consisting of transversely 

isotropic fibers and isotropic matrix on the basis of 

analogies between isotropic and transversely isotropic 

elasticity equations. He derived the effective moduli 

based on the rigorously tested composite cylinder 

assemblage (CCA) model. These results are important 

because most of the modern reinforcement fibers such as 

graphite, carbon, kevlar are highly anisotropic in nature. 

Hashin [10] comprehensively reviewed the analysis of 

composite materials with respect to mechanical and 

materials point of view. Gorji [11] predicted 

thermoelastic properties in unidirectional composites. 

Expressions for E1 and G12 are derived using the theory 

of elasticity approach by Hyer [12].  

The effect of interfacial debonding on the transverse 

Young’s moduli of fiber composites was investigated by 

Takahashi and Chou [13] by use of a cavity formation 

model. An elastic contact model is developed to predict 

the transverse Young’s moduli of unidirectional fiber 

composites with interfacial debonding by Hui-Z and 

Tsu-W [14]. A closed form micromechanical equation 

for predicting the transverse modulus, E2, of continuous 

fiber reinforced polymers is presented by Morais [15].    

 Anifantis [16] predicted the micromechanical stress 

state developed with in fibrous composites that contain a 

heterogeneous inter-phase region by applying finite 

element method to square and hexagonal arrays of 

fibers. Sun et al [17] established a vigorous mechanics 

foundation for using a representative volume element 

(RVE) to predict the mechanical properties of 

unidirectional fiber composites. Li [18] has developed 

two typical idealized packing systems, which have been 

employed for unidirectional fiber reinforced composites, 

viz. square and hexagonal ones to accommodate fibers 

of irregular cross sections and imperfections 

asymmetrically distributed around fibers. He has 

determined the elastic properties of a composite with 

perfect bonding at fiber-matrix interface by applying 

two-dimensional finite element method to the square and 

hexagonal unit cells.    

 

2. PROBLEM STATEMENT 
  

 The present research work deals with the evaluation 

of Mechanical properties by the elasticity theory based 

finite element analysis of representative volume 

elements of fiber-reinforced composites (square unit 

cell). This analysis has been done for perfectly and 

imperfectly bonded fiber-matrix interface of the 

composites.  

 

3. METHODOLOGY 
  

 A schematic diagram of the unidirectional fiber 

composite is shown in Fig. 1, where the fibers are 

arranged in a square array.. It is assumed that the fiber 

and matrix materials are linearly elastic. A 

Representative Volume Element (R.V.E.) in the form of 

a square unit cell is adopted for the analysis. The cross-

sectional area of fiber relative to the total cross-sectional 

area of the unit cell (Fig. 2) is a measure of the volume 

of fiber relative to the total volume of the composite. 

This fraction is an important parameter in composite 

materials and is called fiber volume fraction (Vf).  

 
 

Fig. 1.  Concept of unit cells 

 

 
Fig. 2. Isolated unit cell. 

of Square packed array. 

 

 3-Dimentional Finite Element models are 

developed with governing boundary conditions to study 

the response of the unit cell due to the external loads. 

The Finite Element Software NISA 12 is successfully 

executed for the analysis. 

The present finite element model is validated by 

comparing with the exact elasticity results given by Hyer 
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[12] for the case of perfect bonding, and with results of 

Takahashi and Chou [13] for totally debonding and 

found close agreement. The analysis is extended to 

predict the mechanical properties of the composite for 

different volume fractions with partial debonding at 

fiber-matrix interface.  

 

4. RESULTS  
  

 The 1-2-3 coordinate system shown in Fig. 2 is 

used to study the behaviour of a unit cell (The direction 

1 is along the fiber axis and normal to the plane of the 

2D figure shown). The isolated unit cell behaves as a 

part of a larger array of unit cells.  

It is assumed that the geometry, material and 

loading of the unit cell are symmetrical with respect to 1-

2-3 coordinate system. Therefore, a one eighth portion of 

the unit cell is modeled (Fig. 3) for the prediction of 

mechanical properties. The 3D Finite Element mesh on 

one eighth portion of the unit cell is shown in Fig. 4.  

 

 
Fig. 3.  One eighth portion of Square unit cell. 

    

 

Element Type 
 The element NKTP4 of NISA [19] used for the 

present analysis is based on a general 3D state of stress 

and is suited for modeling 3D solid structure under 3D 

loading [18]. The element has 20 nodes with three 

degrees of freedom per node (UX, UY and UZ). 

 

Materials 
 The graphite fiber and polymer matrix materials 

with following properties are used. 

 

Graphite Fiber: E1 = 233 GPa, E2 (= E3) = 23.1 

GPa, ν12 (= ν13) = 0.2, ν23 = 0.4,           G12 (= G13) = 

8.96 GPa, G23 = 8.27 GPa.                    

Polymer Matrix: E =  4.62 GPa., ν = 0.36, G = 

1.699 GPa. 

 

Boundary Conditions: Due to the symmetry of the 

problem, the following   symmetric boundary 

conditions are used. 

 On the face at x = 0, Ux = 0 

 On the face at y = 0, Uy = 0 

 On the face at z = 0, Uz = 0 

In addition, multipoint constraints are given so that 

the plane faces of the unit cell remain plane after 

deformation. 

 

 
Fig. 4.  3D Finite element mesh. 
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The Young’s modulus in 1-direction (E1), is determined 

using the equation 

  E1 = σ1 / ε1      

 The Poisson’s ratio ν12 (= ν13) is determined using the 

equation 

  ν12  = - ε2 / ε1 

The Young’s modulus in transverse direction (E2 = E3), 

is determined using the equation 

  E2 = σ2 / ε2 

The Poisson’s ratio ν21 (= ν31) is determined using the 

equation 

  ν21  = - ε1 / ε2 

The Poisson's Ratio (23

 

) is calculated using the 

formula, 

   

23

    

=  -3  / 2 

 The finite element solutions are compared with the 

results of the elasticity theory [12] for perfectly bonding 

case(Table 1) and with the results of Takahashi and 

Chou [13] for totally debonding (Table 2) and found 

close agreement.   The above mentioned analyses are 

extended to study the behaviour of unit cell with debond 

along the length of the fiber and extended around the 

circumferential direction at the fiber-matrix interface.  

 

Table 1. Comparison of numerical results for perfect 

bonding 

 

Property Elasticity Solution 

[12]  (GPa) 

Present work 

(GPa) 

E1 (Vf = 0.6)      140.965 141.687 

E1  (Vf = 0.4)          96.035 95.996 

E1(Vf = 0.2)            50.347 50.3047 

  

 The Poisson’s ratio ν12 is determined from the 

same model of E1 and the finite element model used for 

the determination of other Poisson’s ratios and E2 is 

similar to E1 model except in the direction of load. 

Hence the accuracy similar to E1 can be expected for 

these cases also.  

 

Table 2. Comparison of numerical results with complete 

debonding* 

 

Property Takahashi [13]   Present work 

E2 (Vf = 0.6)      16.536 GPa 16.817 GPa 

* Fiber – FP Alumina E = 379 GPa, ν  = 0.2 

   Matrix – Aluminum E = 68.9 GPa, ν  = 0.345 

 

 

 

5. DISCUSSION  

        The normalized values of E1, E2, 12, 21 and 23 are 

plotted in Figs. 5 to 9. The variation of the Young’s 

modulus E1 with respect to % debonding is negligible 

for all the values of Vf  as the fiber action is predominant 

through out. Due to higher fiber stiffness of the 

composite, E1 increases with increase in Vf (Fig.5). The 

transverse Young’s modulus E2 (=E3) decreases with 

increase in debonding for all the values of Vf  because of 

reduction in the action of the fiber with increase in 

debonding. This effect is observed to be more for higher 

volume fractions. Because of this effect, E2 decreases 

with increase in Vf  beyond 60% debonding (Fig.6). 

There is no significant variation of 12 (=13) with 

respect to debonding as in case of longitudinal modulus 

(Fig.7). 21 and 23 decrease with increase in debonding 

and Vf. The reasons discussed for transverse modulus 

may also holds good  for these cases (Figs.8-9).      
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Fig. 5 Effect of debonding on E1 
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Fig. 6 Effect of debonding on E2 
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Fig.7 Effect of debonding on ν12 
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Fig. 8 Effect of debonding on ν21 
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Fig.9 Effect of debonding on ν23 

 

 

 

 

6. CONCLUSIONS 

 
 Mechanical properties of unidirectional 

graphite fiber reinforced composite lamina have been 

predicted using theory of elasticity based finite element 

method applied to representative volume elements in the 

form of square unit cells with fiber-matrix interfacial 

debonding. The following conclusions are drawn. 

 It has been observed that the composite behaves as 

a transversely isotropic material. 

 There is no change in the value of longitudinal 

young’s modules (E1) due to debonding. 

 E2 is invariably affected by debonding and when the 

debonding is grater than 60%, the composite looses 

its utility as its value is much smaller than E of the 

matrix material. 

 The major Poisson's ratio (12) is not much affected 

by debonding. 
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8. NOMENCLATURE 

 
FRP  Fiber Reinforced Plastic 

E1  Young’s modulus in the longitudinal 

direction of the fiber 

E2 (= E3)  Young’s modulus in the transverse 

direction of the fiber 

νij Poisson’s Ratio (i, j = 1, 2, 3)  

Ui Displacement (i = x, y, z) 

σi Normal Stress (i = 1, 2, 3) 

εi Normal Strain (i = 1, 2, 3) 

τij Shear Stress (i, j = 1, 2, 3) 

γij Shear Strain (i, j = 1, 2, 3) 


