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ABSTRACT

The production systems used in the modern industry are usually composed of integrated and complex
processing equipment having automated material handling and advanced computer networks for
information transfer. Mathematical models are essential for understanding various events which are
occurring in production systems. In this paper, max-plus algebra have been applied to model a
complex production system known as multi product production system (MPPS) with different routing
policies and its usefulness to describe and analyze such systems has been presented. An algorithm
known as MPA-algorithm is proposed for analytical model building in max-plus algebra from the
timed event graph (TEG) model. The basic criterion used for performance evaluation of the modeled
system is cycle time, which is evaluated by using Karp’s theorem from graph theory. Other
performance measures of the MPPS are also evaluated from the max-plus model by treating MPPS as a

flow-shop system.
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1. INTRODUCTION

The max-plus algebra, which has maximization
and addition as its basic operations, is one of the
frameworks that can be used to model a class of
discrete event dynamic systems (DEDS). A DEDS
is dynamic, asynchronous system, where the state
transitions are initiated by events that occur at
discrete instants of time. Typical examples of
DEDS are flexible manufacturing systems,
telecommunication  networks, traffic control
systems... A class of mathematical modeling tool
that can also be used for DEDS are Petri nets (PN).
Petri nets give a graphical representation for
DEDS, which closely resembles the physical
system. While reviewing literature related to
modeling of production systems, it is observed that
Petri nets are extensively used for modeling and
performance evaluation [1] [2] [3]. The technique
usually adopted for analysis of Petri nets is either
reachability matrix method or invariant approach.
The problem with these techniques is that, the final
matrix size significantly increases as the
production system size in terms of processing units
is increased, thus making the analysis difficult
[3][4]. This is because the final matrix size of the
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model depends on number of places and
transitions used in the PN model of the system
rather than the number of events present in the
system. To overcome this problem a new
mathematical modeling tool based on max-plus
algebra is used for production systems in the
present work. Max-plus algebra is used in variety
of applications nhamely manufacturing systems [5]
[6], transportation systems [7], communication
systems [8]. However a systematic modeling
methodology in max-plus algebra is not reported
in the literature.

The main objective of this paper is to gain
insight into the performance evaluation of multi
product production systems with different routing
policies and to demonstrate the usefulness of max-
plus algebra to efficiently analyze the problems of
real time control of production systems.
Performance measures in terms of cycle time of
the system, average workload of machine, average
cycle time, average flow time and average
processing time of part are evaluated.
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2. BASICS OF PETRI NETS AND MAX-
PLUS ALGEBRA

The structure of a Petri net [9] [10] is a bipartite
directed graph consisting of two types of nodes
called places and transitions. Places and
transitions are joined by directed arcs. Input
(respectively, output) places of a transition are
places connected by incoming (respectively,
outgoing) arcs of the transition. Formally, a Petri
net is specified as a 4-tuple N = (P, T, F, Mo)
where:

P ={p1, p2, P3.eecvvoens pr} is the finite set of places

T = {ts, to, t3........., t} is the finite set of
transitions

Fc (PxT) U (TxP) is the set of directed arcs
and

Mo =P — {0, 1, 2 ...} is the initial marking of
graph.

A transition t is enabled by a marking M, if and
only if each of its input places is marked with at
least one token. An enabled transition may be
chosen to fire. The firing of a transition consists of
removing one token from each of its input places
and adding one token to each of its output places
(based on the cardinality value of arcs). In order to
comprehend the process of modeling production
systems, timed event graphs are used. A timed
event graph is a subclass of Petri nets, where each
place has only one input and output transition [10].
The aim of using TEG is to describe the behavior
of the system by mathematical linear equations in
max-plus algebra.

Max-plus algebra is normally defined as the

system (R, D, ®), where R= R U{g}isthe
set of real numbers with & = -o0 adjoined, and the
symbols @ and & present binary operations
determined for any a, b € R respectively as, a
@ b=max (a,b), a®b=a+h.

The neutral elements for the operators @ and
®are respectively £= -0 ande =0 (Vae R,

a® g=a and a®e=a). Like other algebraic
structures, the max-plus algebra have properties
and characteristics such as the associativity of
addition and the multiplication, the commutativity
of addition, the distributivity of multiplication,
existence of zero element (denoted & ). The scalar
max-plus operations are extended to matrices in a
standard way. Specifically, for any (n x n)
matrices X = (xi;) and Y = (y;j), the entries of U =
X @ YandV =X & Y are calculated as
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Uj = Xj @ vij, and vij= Zn“@ (Xik @),
k=1

Where the symbol i@ denotes the iterated
k=1

operation@® . The matrix with all its elements

equal to & is the zero matrix, and the identity

matrix E is defined as the diagonal matrix with all

diagonal entries equal to e, i.e.,, Ei=e and Ej=¢

for j#i.

Matrix powers in max-plus algebra have a
special meaning in terms of paths in graph theory.
By definition of matrix  multiplication,
[A%]; = max (aik @ akj) which is just the

k=1,...,n
maximum weight of all paths from j to i with

exactly two arcs. In general, A' is the matrix of
the maximum weights of paths with length 1, and

k
likewise Ak= @A' is the matrix of the
1=0

maximum weights of all paths with length equal to
or smaller than k. Thus the longest or critical path
matrix A is defined as

A=Al = AD A0 A3@....
1=1
The reader can refer [8] for more information on
basics and applications of max-plus algebra. The
next section explains the proposed MPA-algorithm
for analytical model building in max-plus algebra.

3. MAX-PLUS ALGEBRA ALGORITHM
(MPA-ALGORITHM)

The max-plus algebra formalism is useful for
discrete event systems like production systems
where cyclic nature of sequence of operations
occurs. The input parameters required for this
algorithm are: system parameters, which are the
time of event executions on resources, an initial
state, and sequence of resource usage which
guarantee the cyclic system of operations. The
steps involved in MPA-Algorithm are as follows:

1. Specify state vector X, input vector u; and
determine the elements of both the vectors

Xi = (xi @), xi (2),--., xi (K)),
ui = (Ui O, ui (2),-.,uj (k)

where, elements x; (k) are the start time of
operations (event executions) in the k™ iteration
and elements u; (k)  are the time instant at which
parts to be processed enter into the system for the
k" iteration.
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2. Determine the elements of the matrices in linear
state equations of max-plus algebra,

x(K) = A® x(k —1) ® B® u(k)-—- (2)
y(k) =C ® x(k) ~-(3)
where, A is a matrix of size n x n (n is the size
of the state vector), B is a matrix of sizen X m (m
is the number of input start state events) and C is a

matrix of size p X n (p is the number of output
start state events). The entries of A, B and C are in
R = R U{-w}u{+x}tand correspond to
some delays or holding times associated to the
places in TEG. For the system executing two
events, say i and j,

the matrix A consists of the following elements:

0] Ajj = dj if the j™" event precedes the i
event and the j™ event does not precede directly to
the beginning of a cycle;

(i) Aj = & in other cases, where d; is the
execution time of j* operation.

the matrix B consists of the following elements:

(i) By = dj, if the j™ event precedes the it" event and
the j™ event does not precede directly to the
beginning of a cycle;

(ii) By = e, if the start of the i event is a required
condition to start the ji" operation;

(iii) Bjj = & in other cases.

the matrix C consists of the following elements:

(i) Cj = dj, if the j" event precedes the i event
and the j™ event does precede directly to the
beginning of a next cycle;

(ii) Cjj = & in other cases,

3. Introduce an identity matrix E€ ‘J_%nxn to
describe the dynamics of restarting for the next
cycle.
uk)=E®y(k -1 -~ (4)
where, y(k-1) is the time instant at which (k-1)"
event finishes and is the last event in the system
and u(k) is the time instant at which k" event
starts.
4. Substitute equation (4) in equation (2)
X(k)=A®x(k-1) ®B®E ® y(k —1)--- (5)
5. Modify the equation (3) for (k-1)" cycle and
substitute y(k-1) in equation (5)

x(k) = A®x(k-1) ®B®E ®C ® x(k —1)

—(A®@BRE®C)®x(k-1)
—A® x(k 1) - (6)
where: A= (A®@B®E ®C)
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6. Use following max-plus expression for
difference in the same state variables of two
subsequent cycles to determine the value of cycle
time A.

x(k) =41 ®x(k -1) ---(7)

7. Determine the value of cycle time A from
equation (6) and (7)

A@x(k-1)=1®x(k-1)

_ where A is a max-plus eigen value of the matrix
A. The eigen value is determined by using Karp’s
theorem.

3.1 Karp’s Theorem Statement

Given an n X n matrix A, with corresponding
precedence graph G = (v, 3), where v is a set of
elements called nodes and d is a set the elements
of which are ordered pairs of nodes called arcs.
The maximum cycle mean A is given by

/1=_max min [(An)ij —(Ak)ij]/(n—k) Vi --(8)
i=1..nk=0..n-1

In the equation (8), A" and A* are to be
evaluated as in max-plus algebra; the other
operations are conventional ones. The index j is
arbitrary and one can take any j € {1... n}. The
resulting value of A is independent of j [8].

4. DESCRIPTION OF A MULTI PRODUCT
PRODUCTION SYSTEM

The multi product production  system
considered here as a case study consists of four
machines and four parts. The system is to produce
all four kinds of parts according to a certain
product mix. The routes followed by each part and
each machine are depicted in Fig.1 in which M; i =
1,2,3,4 are machines and Pj, i =1, 2, 3, 4 are the
parts. Processing times of parts P1, P2, P3 and P4 on
various machines are given in Table 1.

Fig 1. Routing of parts along machines in
MPPS
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Table 1: Processing times (di) of machines

Parts/

Machines P1 P, Ps3 P4
M1 - 1 5 -
Mo 3 3 4 -
M3 5 2 7 4
Mg 4 6 - 3

Parts of type P first visit machine My next goes
to M3 and then go to M.. Parts of type P, enter the
system via machine Mg, then they go to M; and
then to M3 finally leaving the system through
machine My. Parts of type Ps enter the system at
M3 next goes to M, and leaves the system through
Ms. Parts of type P4 first visit M3 and then go to
Ms. The characteristics of the MPPS are as
follows:

- Parts are carried around on pallets and there is
one pallet available for each type of part.

- Transportation times are negligible and there are
no setup times on the machines when they switch
from one part type to another.

- Sequencing of the various parts on the machines
is known: on machine My it is (P2, P3), i.e., the
machine first processes a part of type P, and then
part of type Ps, on machine M it is (P1, P2, P3), on
machine Mgz it is (P1, P2, P3P4) and (P1, P2, P4) on
machine Ma. These sequences are called local
dispatching rules.

- The final product mix is balanced in the sense
that it can be obtained by means of a periodic input
of parts, here chosen to be Py, Py, P3, Pa.

The information about the sequencing and the
duration (processing times) of the various events is
shown in Fig. 2 with the help of precedence graph.

y4k)

Fig 2. Precedence graph for MPPS with
feedback arcs
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In the Fig.2, the events are represented by
ordered pairs of the form (Pi, M;) meaning that part
of type P; is processed on machine M;. The arcs
represent the precedence constraint and the dotted
line shows the feedback arc indicating the
beginning of next sequence. It means that, after a
machine has finished a sequence of products, it
starts with the next sequence. If the pallet on
which product P; was mounted is at the end, the
finished product is removed and the empty pallet
immediately goes back to the starting point to pick
up a new product P;.

The timed event graph model of the MPPS is
shown in Fig 3. This TEG model is constructed
from the events identified in MPPS. Here the
timing under consideration (i.e., duration of
events) is limited to constant holding times on
places. The firing times of all the transitions are
assumed to be zero and they are called as
immediate transitions. The start of identified
events in the system is shown with transitions,
which are given in Table 2. For example the event
X1 which describe ‘M; is ready to process P.’ is
shown with two places ps and p.. Here ps indicates
the processing of P, by machine M; and ps
indicates the part P, is busy. Similarly the
interpretations for other events are to be made.

Pi4

Fig 3. Timed event graph model of
MPPS
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Table 2: Description of events

Transition Description
X1 M is ready to process P
X2 M is ready to process Ps
X3 M is ready to process Pq
X4 M is ready to process P
Xs5 M is ready to process Ps
Xs M3 is ready to process Pq
X7 Mj is ready to process P
Xg M is ready to process Ps
Xg M3 is ready to process P4
X10 M, is ready to process Pq
X11 M, is ready to process P
X12 M, is ready to process P4

5. PERFORMANCE EVALUATION IN MAX-
PLUS ALGEBRA

This section gives the evolution of max-plus
algebra equations from the timed event graph
model of the MPPS. Let
ui (k) > Time instant at which machine M; is
available for the first activity i = 1,2,3,4.
uj (k) = Time instant at which the raw material for
a part of type Pj. is available in the k" production
cycle for j=5,6,7,8.
Xi (K) = Time instant at which activity i starts in
the k™ production cycle fori=1, 2,...,12.
yi (k) > Time instant at which machine M; has
finished processing the last part of k" processing
cyclei=1,2, 3,4
yj (K) = Time instant at which finished product of
type Pj.4 of the k" production cycle completed for j
=5,6,7,8

The set of mathematical equations shown in (9)
and (10) is derived for the MPPS from the
concepts of max-plus algebra. For example, the
event xi(k) starts at the instant of max{5+xz(k-1),
6+x11(k-1), us(k), ui(k)}. It implies that the event
xa1(K) starts at the maximum time of either of the
following time instants:

the time at which the event x; is finished in (k-1)"
cycle; the time at which the event xi; is finished in
(k-1)™ cycle; the time at which part P, (correspond
to us) and machine M; (correspond to ui) is
available in k™ cycle. It is also reflected from the
timed event graph model of the system, as the
events X, and xj;1 are input to the event xi.
Similarly procedure is adopted while deriving the
equations for other events.
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x1(k) =5® xo (k=) ® 6@ x33(k =1) D ug (k) © uy (k) \
x2(K) =1® x (k) ©7 ® xg(k —1) @ u7 (k)
x3(k)=4®x5(k-1) @4 ® x19(k —1) © us (k) @ uz (k)
x4 (K) =3® x5 (k) ®1® x, (K) - (9
x5(K) =3® x4 (k) ®5® x5 (K)
x5 (k) =4® xg(k —1) ©3® x3(k) ® u3(k) >
x7(K) =5® xg (k) ©3® x4 (k)

xg(K) =2® x7 (k) ® 4 ® x5 (k)

x9(K) =7 ® xg(K) ®3® x2(k 1) ® ug (k)

x10(K) =5® x5 (k) @ 3® x15 (k =1) @ ug(k)

x11(K) = 2® x7 (k) ® 4 ® x9(k)

x12(K) = 4@ x9 (K) © 6 x4 (K) J

The equations for the finished product types
can be derived as follows:

Vi(k) =5 @ xa(k) )
V2 (k) = 4 ® x5 (k)

Y3 (K) = 4 ® xo (K)

Va (k) = 3® x15 (k)
Vo) = 4@ xao(k) [
Ve (K) = 6 ® x11(K)

Y7 (K) = 7 ® xg (k)

Ve (K) =3® x12(k) )

- (10)

The evolution equations (9) and (10) of MPPS
can be simplified in matrix-equation form as
follows:

x(K) = Ao ® x(K) ® AL ® x(k —1) ® B ® u(K)
= A®x(k-1) ®B®u(k)

y(k) =C®x(k)

Where:
A= AR A
B=A0®Bo

X(K) =[x (K), x2 (K)o xa2 (KO
X(k =1 =[xy (k =1, x2 (K =), xa2 (K =D
u(k) = [ua (k) uz (k). ug (K)T"

Here AB is the kleene star operator matrix of

max-plus algebra [8]. MPA-algorithm s
implemented for the equation set (9) and (10), and
the evaluation of matrices is made using Matlab
programs. It results in the final matrix A as:
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£ 5 &8 & &8 & £ £ 6 2| 6 24 42 60 78 96 114 132 150 168
g 6 & ¢ & & & 7 e & 1 &
co s L0 0 10 28 46 64 82 100 118 136 154 172
e 6 &£ & 7T & & & & 1 1T & 21 39 57 75 93 111 129 147 165 183
e 11 ¢ ¢ 10 ¢ ¢ 12 ¢ 10 12 ¢
24 42 60 78 96 114 132 150 168 186
A le € € ¢ 1T & ¢ & 4 7 s & Y =
A=l 9 s 212 65 & 9 12 10 & 12 30 48 66 84 102 120 138 156 174
£ 15 s 2 1 & 2 16 11 14 16 = 18 36 54 72 90 108 126 144 162 180
& 22 & & 21 & & 23 18 21 23 3
J e S 17 35 53 71 89 107 125 143 161 179
& 11 ¢ ¢ 16 ¢ ¢ ¢ 13 16 12 7 24 42 60 78 96 114 132 150 168 186
e 26 ¢ & 25 ¢ & 21 22 25 27 13|

The calculation of unique eigen value A (i.e. the
maximum cycle mean) for the matrix A is
determined by applying the Karp’s theorem which
is equal to 18. It implies that the maximum cycle
mean for the given MPPS is equal to 18. The
throughput rate of the system is equal to the
inverse of the cycle mean. Hence the throughput
rate= 1/ A= 1/18.

The periodic behavior of the MPPS has been
characterized graphically by running the system
for ten consecutive cycles, and a Gantt chart
shown in Fig.4 is drawn with time on x-axis and
the event number on y-axis. The chart indicates the
state vector evolution or the occurrence of various
events with time. It clearly shows the cyclic
operational behavior of the resources within the
system for all the events.

For machinei (1 <i<4)andpartj (5<j<8),
following performance relations of flow-shop
systems can be applied.

Flow time of part j = y;(k) — y;(k-1)
Average flow time for part j =

LS 0oy (k-1
L3 y00-y, k-

Average processing time of part j= 1 i d i (K)
="
Average workload of machinei= 1 g di (K)
K k=2
Average cycle time for machine i =

1k
2 Vi) =yi(k=0)
k=1

Application of these relations to the output
vector Y values and the processing times of Table

. .' .' HD =ll i 1 results in the system performance measures
[ shown in Table 3 and Table 4.
5 ll kR |
: Ellll ! Table 3: Performance measures of parts
S
FIIRCRT Part No.— 1 2 3 4
. il L0 Flow time 18 18 18 18
Pl T INEN R Average flow 18 18 18 18
memm g e time
Average 12 12 16 7
Fig 4. Gantt chart for execution of events with processing time

time

The MPPS can be treated as a flow shop
problem since all the parts have the same

Table 4: Performance measures of machines

processing sequence through the machines. Machine No. & 1 2 3 4
Therefore other performance measures of the Average 6 10 18 13
system are evaluated by determining the sequence workload
of max-plus output vector Y. The vector Y shown Average cycle 18 18 18 18
below is determined by running the system for ten time
consecutive cycles (1< k < 10). The rows indicate
the values of output vector y; (1< i < 8) and the
columns indicate the cycle number (k).
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6. CONCLUSIONS

Max-plus algebra, a new mathematical
modeling tool used for DEDS, have been shown to
be useful in modeling and performance evaluation
of production systems. The MPA-algorithm
presented in this paper can be applied for other
production systems. Matlab programs can be used
to analyze the max-plus model of the system. It is
concluded that the Matlab programs of MPA-
algorithm are helpful in real time control of
production systems. It is observed that the
computational time required for determining the
unique eigen value of the final matrix A increases
as the number of events in system increases.
Further research can be carried out by exploring
the potential application of MPA-algorithm for
modeling of modular production systems.
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