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ABSTRACT 

The production systems used in the modern industry are usually composed of integrated and complex 

processing equipment having automated material handling and advanced computer networks for 

information transfer. Mathematical models are essential for understanding various events which are 

occurring in production systems. In this paper, max-plus algebra have been applied to model a 

complex production system known as multi product production system (MPPS) with different routing 

policies and its usefulness to describe and analyze such systems has been presented. An algorithm 

known as MPA-algorithm is proposed for analytical model building in max-plus algebra from the 

timed event graph (TEG) model. The basic criterion used for performance evaluation of the modeled 
system is cycle time, which is evaluated by using Karp’s theorem from graph theory. Other 

performance measures of the MPPS are also evaluated from the max-plus model by treating MPPS as a 

flow-shop system. 
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1. INTRODUCTION  
    
     The max-plus algebra, which has maximization 

and addition as its basic operations, is one of the 

frameworks that can be used to model a class of 
discrete event dynamic systems (DEDS). A DEDS 

is dynamic, asynchronous system, where the state 

transitions are initiated by events that occur at 

discrete instants of time. Typical examples of 

DEDS are flexible manufacturing systems, 

telecommunication networks, traffic control 

systems… A class of mathematical modeling tool 

that can also be used for DEDS are Petri nets (PN). 

Petri nets give a graphical representation for 

DEDS, which closely resembles the physical 

system. While reviewing literature related to 
modeling of production systems, it is observed that 

Petri nets are extensively used for modeling and 

performance evaluation [1] [2] [3]. The technique 

usually adopted for analysis of Petri nets is either 

reachability matrix method or invariant approach. 

The problem with these techniques is that, the final 

matrix size significantly increases as the 

production system size in terms of processing units 

is increased, thus making the analysis difficult 

[3][4]. This is because the final matrix size of the 

model depends on number of places and 

transitions used in the PN model of the system 

rather than the number of events present in the 
system. To overcome this problem a new 

mathematical modeling tool based on max-plus 

algebra is used for production systems in the 

present work. Max-plus algebra is used in variety 

of applications namely manufacturing systems [5] 

[6], transportation systems [7], communication 

systems [8]. However a systematic modeling 

methodology in max-plus algebra is not reported 

in the literature.  

     The main objective of this paper is to gain 

insight into the performance evaluation of multi 
product production systems with different routing 

policies and to demonstrate the usefulness of max-

plus algebra to efficiently analyze the problems of 

real time control of production systems. 

Performance measures in terms of cycle time of 

the system, average workload of machine, average 

cycle time, average flow time and average 

processing time of part are evaluated.  
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2. BASICS OF PETRI NETS AND MAX-
PLUS ALGEBRA 
     The structure of a Petri net [9] [10] is a bipartite 
directed graph consisting of two types of nodes 

called places and transitions. Places and 

transitionsbare joined by directed arcs. Input 

(respectively, output) places of a transition are 

places connected by incoming (respectively, 

outgoing) arcs of the transition. Formally, a Petri 

net is specified as a 4-tuple N = (P, T, F, Mo) 

where:  

P = {p1, p2, p3………,pr} is the finite set of places 

T = {t1, t2, t3………, tr} is the finite set of 

transitions 

F   (P T)   (TP) is the set of directed arcs 

and  

Mo = P  {0, 1, 2 …} is the initial marking of 

graph. 

     A transition t is enabled by a marking Mo if and 

only if each of its input places is marked with at 

least one token. An enabled transition may be 

chosen to fire. The firing of a transition consists of 

removing one token from each of its input places 

and adding one token to each of its output places 

(based on the cardinality value of arcs). In order to 

comprehend the process of modeling production 

systems, timed event graphs are used. A timed 

event graph is a subclass of Petri nets, where each 
place has only one input and output transition [10]. 

The aim of using TEG is to describe the behavior 

of the system by mathematical linear equations in 

max-plus algebra. 

     Max-plus algebra is normally defined as the 

system ( , , ), where =   { } is the 

set of real numbers with   = -∞ adjoined, and the 

symbols    and  present binary operations 

determined for any a, b     respectively as, a 

  b = max (a, b),  a b = a + b. 

     The neutral elements for the operators   and 

 are respectively  = -∞ and e = 0 ( a , 

a  =a and a e=a). Like other algebraic 

structures, the max-plus algebra have properties 

and characteristics such as the associativity of 

addition and the multiplication, the commutativity 

of addition, the distributivity of multiplication, 

existence of zero element (denoted  ). The scalar 

max-plus operations are extended to matrices in a 

standard way. Specifically, for any (n   n) 

matrices X = (xij) and Y = (yij), the entries of U = 

X    Y and V = X   Y are calculated as  

uij = xij   yij,    and   vij =  



n

k 1

 (xik  ykj ), 

Where the symbol 



n

k 1

 denotes the iterated 

operation . The matrix with all its elements 

equal to   is the zero matrix, and the identity 

matrix E is defined as the diagonal matrix with all 

diagonal entries equal to e, i.e., Eii = e and Eij = ε 

for j ≠ i.  

     Matrix powers in max-plus algebra have a 

special meaning in terms of paths in graph theory. 
By definition of matrix multiplication, 

ijA ][ 2 = )(max
,...,1

aa kjik
nk




, which is just the 

maximum weight of all paths from j to i with 

exactly two arcs. In general, A
l is the matrix of 

the maximum weights of paths with length l, and 

likewise AA
l

k

l

k

0

 is the matrix of the 

maximum weights of all paths with length equal to 

or smaller than k. Thus the longest or critical path 

matrix Ā is defined as  

 Ā = ....32

1





AAAA

l

l

. 

The reader can refer [8] for more information on 

basics and applications of max-plus algebra. The 

next section explains the proposed MPA-algorithm 

for analytical model building in max-plus algebra. 

 

3. MAX-PLUS ALGEBRA ALGORITHM 
(MPA-ALGORITHM) 
     The max-plus algebra formalism is useful for 

discrete event systems like production systems 
where cyclic nature of sequence of operations 

occurs. The input parameters required for this 

algorithm are: system parameters, which are the 

time of event executions on resources, an initial 

state, and sequence of resource usage which 

guarantee the cyclic system of operations. The 

steps involved in MPA-Algorithm are as follows: 

 

1. Specify state vector xi, input vector ui and 

determine the elements of both the vectors 

))(),...,2(),1((

)),(),...,2(),1((

kuuuu

kxxxx

iiii

iiii




          ----- (1) 

     where, elements xi (k) are the start time of 

operations (event executions) in the kth iteration 

and elements ui (k)     are the time instant at which 

parts to be processed enter into the system for  the 

kth iteration. 
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2. Determine the elements of the matrices in linear 

state equations of max-plus algebra, 

 

)()1()( kuBkxAkx  ---- (2) 

)()( kxCky               ----(3)      

     where, A is a matrix of size n   n (n is the size 

of the state vector), B is a matrix of size n   m (m 

is the number of input start state events) and C is a 

matrix of size p   n (p is the number of output 
start state events). The entries of A, B and C are in 

  =  }{}{  and correspond to 

some delays or holding times associated to the 

places in TEG. For the system executing two 

events, say i and j, 

the matrix A consists of the following elements:  

(i) Aij = dj, if the jth event precedes the ith 

event and the jth event does not precede directly to 

the beginning of a cycle;  

(ii) Aij =    in other cases, where dj is the 

execution time of jth operation.  

the matrix B consists of the following elements:  

       (i) Bij = dj, if the jth event precedes the ith event and 

the jth event does not precede directly to the 

beginning of a cycle; 

       (ii) Bij = e, if the start of the ith event is a required 
condition to start the jth operation;  

       (iii) Bij =   in other cases. 

the matrix C consists of the following elements:  

(i) Cij = dj, if the jth event precedes the ith event  

and the jth event does precede directly to the 

beginning of a next cycle;  

(ii) Cij =    in other cases,  

3. Introduce an identity matrix E
nn

 to 

describe the dynamics of restarting for the next 

cycle.   

    )1()(  kyEku                           ---- (4) 

     where, y(k-1) is the time instant at which (k-1)th 

event finishes and is the last event in the system 
and u(k) is the time instant at which kth event 

starts.  

4. Substitute equation (4) in equation (2) 

)1()1()(  kyEBkxAkx --- (5) 

5. Modify the equation (3) for (k-1)th cycle and 

substitute y(k-1) in equation (5)  

 

)1()1()(  kxCEBkxAkx

        )1()(  kxCEBA  

        Â )1(  kx                            --- (6) 

where: Â )( CEBA   

6. Use following max-plus expression for 

difference in the same state variables of two 

subsequent cycles to determine the value of cycle 
time λ.       

 )1()(  kxkx                ---- (7) 

 

7. Determine the value of cycle time λ from 

equation (6) and (7) 

 

Â )1()1(  kxkx   

 

     where λ is a max-plus eigen value of the matrix 

Â. The eigen value is determined by using Karp’s 

theorem. 

 

3.1 Karp’s Theorem Statement  

     Given an n   n matrix A, with corresponding 

precedence graph Ĝ = ( , δ), where   is a set of 

elements called nodes and δ is a set the elements 

of which are ordered pairs of nodes called arcs. 

The maximum cycle mean λ is given by  

 

)/(])()[(minmax
1...0...1

knAA ij
k

ij
n

nkni




   j  -- (8) 

 

     In the equation (8), An and Ak are to be 

evaluated as in max-plus algebra; the other 

operations are conventional ones. The index j is 

arbitrary and one can take any j   {1... n}. The 

resulting value of λ is independent of j [8].  

 

4. DESCRIPTION OF A MULTI PRODUCT 

PRODUCTION SYSTEM 
 
     The multi product production system 

considered here as a case study consists of four 

machines and four parts. The system is to produce 

all four kinds of parts according to a certain 

product mix. The routes followed by each part and 
each machine are depicted in Fig.1 in which Mi, i = 

1,2,3,4 are machines and Pi, i =1, 2, 3, 4 are the 

parts. Processing times of parts P1, P2, P3 and P4 on 

various machines are given in Table 1. 

 
Fig 1. Routing of parts along machines in 

MPPS 
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     Table 1: Processing times (di) of machines 

 

 

 

Parts/ 

Machines 
P1 P2 P3 P4 

M1 - 1 5 - 

M2 3 3 4 - 

M3 5 2 7 4 

M4 4 6 - 3 

 

     Parts of type P1 first visit machine M2 next goes 

to M3 and then go to M4. Parts of type P2 enter the 

system via machine M1, then they go to M2 and 

then to M3 finally leaving the system through 

machine M4. Parts of type P3 enter the system at 

M1 next goes to M2 and leaves the system through 

M3. Parts of type P4 first visit M3 and then go to 

M4. The characteristics of the MPPS are as 

follows: 

- Parts are carried around on pallets and there is 
one pallet available for each type of part. 

- Transportation times are negligible and there are 

no setup times on the machines when they switch 

from one part type to another. 

- Sequencing of the various parts on the machines 

is known: on machine M1 it is (P2, P3), i.e., the 

machine first processes a part of type P2 and then 

part of type P3, on machine M2 it is (P1, P2, P3), on 

machine M3 it is (P1, P2, P3,P4) and (P1, P2, P4) on 

machine M4. These sequences are called local 

dispatching rules. 

- The final product mix is balanced in the sense 
that it can be obtained by means of a periodic input 

of parts, here chosen to be P1, P2, P3, P4. 

     The information about the sequencing and the 

duration (processing times) of the various events is 

shown in Fig. 2 with the help of precedence graph. 

 

 
Fig 2. Precedence graph for MPPS with 

feedback arcs 

     In the Fig.2, the events are represented by 

ordered pairs of the form (Pi, Mj) meaning that part 

of type Pi is processed on machine Mj. The arcs 

represent the precedence constraint and the dotted 

line shows the feedback arc indicating the 

beginning of next sequence. It means that, after a 

machine has finished a sequence of products, it 

starts with the next sequence. If the pallet on 

which product Pi was mounted is at the end, the 

finished product is removed and the empty pallet 

immediately goes back to the starting point to pick 

up a new product Pi. 
     The timed event graph model of the MPPS is 

shown in Fig 3. This TEG model is constructed 

from the events identified in MPPS. Here the 

timing under consideration (i.e., duration of 

events) is limited to constant holding times on 

places. The firing times of all the transitions are 

assumed to be zero and they are called as 

immediate transitions. The start of identified 

events in the system is shown with transitions, 

which are given in Table 2. For example the event 

x1 which describe ‘M1 is ready to process P2’ is 
shown with two places p3 and p4. Here p3 indicates 

the processing of P2 by machine M1 and p4 

indicates the part P2 is busy. Similarly the 

interpretations for other events are to be made.  

            Fig 3. Timed event graph model of    

MPPS 
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Table 2: Description of events 

 

Transition Description 

x1 M1 is ready to process P2 

x2 M1 is ready to process P3 

x3 M2 is ready to process P1 

x4 M2 is ready to process P2 

x5 M2 is ready to process P3 

x6 M3 is ready to process P1 

x7 M3 is ready to process P2 

x8 M3 is ready to process P3 

x9 M3 is ready to process P4 

x10 M4 is ready to process P1 

x11 M4 is ready to process P2 

x12 M4 is ready to process P4 

 

5. PERFORMANCE EVALUATION IN MAX-   

PLUS ALGEBRA 

     This section gives the evolution of max-plus 

algebra equations from the timed event graph 

model of the MPPS. Let 

ui (k)  Time instant at which machine Mi is 

available for the first activity i = 1,2,3,4. 

uj (k)  Time instant at which the raw material for 

a part of type Pj-4 is available in the kth production 

cycle for j = 5,6,7,8. 

xi (k)  Time instant at which activity i starts in 

the kth production cycle for i = 1, 2,…,12. 
yi (k)  Time instant at which machine Mi has 

finished processing the last part of kth processing 

cycle i=1,2, 3, 4 

yj (k)  Time instant at which finished product of 

type Pj-4 of the kth production cycle completed for j 

=5,6,7,8 

 

The set of mathematical equations shown in (9) 

and (10) is derived for the MPPS from the 

concepts of max-plus algebra. For example, the 

event x1(k) starts at the instant of max{5+x2(k-1), 
6+x11(k-1), u6(k), u1(k)}. It implies that the event 

x1(k) starts at the maximum time of either of the 

following time instants: 

the time at which the event x2 is finished in (k-1)th  

cycle; the time at which the event x11 is finished in 

(k-1)th cycle; the time at which part P2 (correspond 

to u6) and machine M1 (correspond to u1) is 

available in kth cycle. It is also reflected from the 

timed event graph model of the system, as the 

events x2 and x11 are input to the event x1. 

Similarly procedure is adopted while deriving the 

equations for other events. 

 

)(6)(4)(

)(4)(2)(

)()1(3)(5)(

)()1(3)(7)(

)(4)(2)(

)(3)(5)(

)()(3)1(4)(

)(5)(3)(

)(1)(3)(

)()()1(4)1(4)(

)()1(7)(1)(

)()()1(6)1(5)(

11912

10711

812610

81289

578

467

3396

245

134

251053

7812

161121

kxkxkx

kxkxkx

kukxkxkx

kukxkxkx

kxkxkx

kxkxkx

kukxkxkx

kxkxkx

kxkxkx

kukukxkxkx

kukxkxkx

kukukxkxkx

























   -- (9) 

 

     The equations for the finished product types 

can be derived as follows: 

 

    

)(3)(

)(7)(

)(6)(

)(4)(

)(3)(

)(4)(

)(4)(

)(5)(

128

87

116

105

124

93

52

21

kxky

kxky

kxky

kxky

kxky

kxky

kxky

kxky

















                        -- (10) 

 

     The evolution equations (9) and (10) of MPPS 

can be simplified in matrix-equation form as 

follows: 

 

  

)()1()()( 010 kuBkxAkxAkx   

           )()1( kuBkxA   

 

 )()( kxCky   

 

Where: 

         

BAB

AAA

0
*
0

1
*
0



  

T

T

T

kukukuku

kxkxkxkx

kxkxkxkx

)](),....,(),([)(

)]1(),....,1(),1([)1(

)](),....,(),([)(

821

1221

1221







 

     Here A
*
0  is the kleene star operator matrix of 

max-plus algebra [8]. MPA-algorithm is 

implemented for the equation set (9) and (10), and 

the evaluation of matrices is made using Matlab 

programs. It results in the final matrix Â as:  
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













































13272522272526

71216131611

312912

3232118232122

161411161415

10129129

747

1210121011

7776

44

776

65

 Â























  

 
     The calculation of unique eigen value λ (i.e. the 

maximum cycle mean) for the matrix Â is 

determined by applying the Karp’s theorem which 

is equal to 18. It implies that the maximum cycle 

mean for the given MPPS is equal to 18.   The 

throughput rate of the system is equal to the 
inverse of the cycle mean. Hence the throughput 

rate = 1/ λ = 1/18. 

     The periodic behavior of the MPPS has been 

characterized graphically by running the system 

for ten consecutive cycles, and a Gantt chart 

shown in Fig.4 is drawn with time on x-axis and 

the event number on y-axis. The chart indicates the 

state vector evolution or the occurrence of various 

events with time. It clearly shows the cyclic 

operational behavior of the resources within the 

system for all the events. 

 

 
 

Fig 4. Gantt chart for execution of events with 

time 

 

       The MPPS can be treated as a flow shop 

problem since all the parts have the same 

processing sequence through the machines. 
Therefore other performance measures of the 

system are evaluated by determining the sequence 

of max-plus output vector Y. The vector Y shown 

below is determined by running the system for ten 

consecutive cycles (1≤ k ≤ 10). The rows indicate 

the values of output vector yi (1≤ i ≤ 8) and the 

columns indicate the cycle number (k). 

 

1861681501321149678604224

1791611431251078971533517

1801621441261089072543618

1741561381201028466483012

1861681501321149678604224

1831651471291119375573921

1721541361181008264462810

16815013211496786042246

Y

 

 
     For machine i (1 ≤ i ≤ 4) and part j (5 ≤ j ≤ 8), 
following performance relations of flow-shop 

systems can be applied. 

 

Flow time of part j = yj(k) – yj(k-1)  

Average flow time for part j = 

)1()(
1

1




kyky
k jj

k

k

 

Average processing time of part j = )(
1

1

kd
k

j

k

k



 

Average workload of machine i = )(
1

1

kd
k

i

k

k



 

Average cycle time for machine i = 

)1()(
1

1




kyky
k ii

k

k

 

 

     Application of these relations to the output 

vector Y values and the processing times of Table 

1 results in the system performance measures 

shown in Table 3 and Table 4.  

 

Table 3: Performance measures of parts 

  

Part No. 1 2 3 4 

Flow time 18 18 18 18 

Average flow 

time 

18 18 18 18 

Average 

processing time 

12 12 16 7 

 
 

Table 4: Performance measures of machines 

 

Machine No. 1 2 3 4 

Average 

workload 

6 10 18 13 

Average cycle 

time 

18 18 18 18 
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6. CONCLUSIONS 
 
     Max-plus algebra, a new mathematical 
modeling tool used for DEDS, have been shown to 

be useful in modeling and performance evaluation 

of production systems. The MPA-algorithm 

presented in this paper can be applied for other 

production systems. Matlab programs can be used 

to analyze the max-plus model of the system. It is 

concluded that the Matlab programs of MPA-

algorithm are helpful in real time control of 

production systems. It is observed that the 

computational time required for determining the 

unique eigen value of the final matrix Â increases 

as the number of events in system increases. 
Further research can be carried out by exploring 

the potential application of MPA-algorithm for 

modeling of modular production systems.  
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