
Journal of Manufacturing Engineering, 2007, Vol.2, Issue.2 

 

© SME 92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

1. INTRODUCTION 

The highly competitive nature of the 

automotive industry demands continuous product 

innovation and reduction in product development cycle 

time while satisfying ever-increasing performance and 

regulatory requirements. Numerical design 

optimization, embedded in a simulation-driven product 

development framework, provides a scientific approach 

to automatically determine the most efficient designs 

under the target operating environment. When a 
multidisciplinary design optimization method is used, 

the deterministic optimum design is frequently pushed 

to the design constraint boundary, leaving very little or 

no room for tolerances (or uncertainties) in design, 

manufacturing, and operating processes. Consequently, 

deterministic optimum design that is obtained without 

consideration of such uncertainties can result in 

unreliable design, underscoring the need for reliability-

based design optimization (RBDO). The basic 

difference between deterministic and 

reliability/robustness based approach is that we get 
optimal” design solution with the first variant, while 

optimal “mean” design points are derived from second 

variant. Crash simulation gives crash-based safety 

design engineers the opportunity to explore many more 

alternative designs than they could with hardware. A 

feasibility study of vehicle safety CAE optimization 

single objective) has been done [1]. Approximate 

methods for safety optimization of large systems were 

compared in terms of accuracy and effectiveness [2]. 

RBDO for vehicle crashworthiness was attempted using 

the Monte Carlo Simulation (MCS) method on a global 
response surface [3]. But all these studies were done for 

single objective and multiple constraints. In such a case, 

there is a single optimal design point assuming optimal 

solution exists). In case of multiple, conflicting 

objectives driving a design under a set of constraints, 

there would be no single optimal design point, but a set 

of “optimal” points in the objective space. The set is 

referred to as pareto optimal front. To the best of 

author’s knowledge, reliability based multi-objective 

optimization of automotive components has not been 

reported in the literature. The same is true for robust 

multi-objective optimization formulation. Since crash 
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analysis is computationally intensive, a global response 

surface, generated with the optimal LHS Design of 

Experiment (DoE) [4], is treated as the original problem 

for RBDO. The rationale for this approach is that the 

global response surface may have the characteristic of 
the design dependency and the main purpose is to show 

the proposed RBDO methodology for a large-scale 

problem. Two different approaches have been used for 

reliability computation in this work: mean value 

approach or the approximate moment approach (AMA) 

and reliability index approach (RIA). Robustness has 

been introduced using mean-value based approach. 

 

 

2. DETERMINISTIC MULTI-OBJECTIVE 
FORMULATION 
 

A deterministic multi-objective optimization 

problem with (M) objective and (P) constraints is stated 

as below: 

 

Minimize f(X) = (f1(X),f2(X),…,fM(X)) 
Subject to: 

G1 (X) ≤ 0 

G2 (X) ≤ 0 

. 

. 

Gp (X) ≤ 0 

 
Here the objective is a “ vector” with M-

components and therefore is also termed as “ vector” 

optimization problem. Here, the objective functions lie 

in a multidimensional space, in addition to the usual 

multidimensional design variable space. For each 

solution X in the design variable space, there exists a 

point in the objective space Z = [f1(X), f2(X), …., 

fM(X)]. The output is not a single point, but a set of non-
dominated points designated as pareto optimal set, 

which conforms to a partial order relation. A pareto 

optimal solution that is better with respect to one 

objective requires a compromise in at least one other 

objective. 

 

3. RELIABILITY BASED MULTI-OBJECTIVE 
OPTIMIZATION FORMULATION 

 

In system parameter design, the reliability-based multi 

objective design optimization (RBMODO) problem can 

be stated as: 
 

Minimize f(X) = (f1(X),f2(X),…,fM(X)) 

Subject to: 

)()0)(( tii XGP   

Where   i=1…,p 

ti  represents the cumulative distribution function  of 

standard normal distribution with ti  being the 

prescribed reliability target corresponding to i-th 

constraint. The constraints can also be cast in another 

format relating safety reliability index si to prescribed 

reliability target such that si ≥ ti   this formulation is 

used for all reliability constraint formulations in this 

work. One striking difference between the deterministic 

and reliability based optimization is that, in the 
reliability based optimization, the optimized parameters 

are the “mean” optimal values rather than “the” optimal 

values. This is because, reliability based optimization 

formulation assumes variation about “mean” values and 

makes sure that the optimal design thus arrived do not 

fail in any performance criteria (e.g., constraints) due to 

these variations (see figure. 1). In reliability based 

optimization approaches, the additional computation 

step is computation of safety reliability index si . Two 

approaches have been tried for computation of si . 

 

3. APPROXIMATE MOMENT APPROACH (AMA)  
 

AMA does not require information about the 
probability distribution of design variables, but require 

derivative information of performance constraints with 

respect to design variables about their mean values. The 

performance function G(X) is expanded at the mean 

value point using Taylor series:  
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The safety reliability index is computed as: 
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This is the simplest possible approach and no 

detailed probabilistic distribution models are required. 

But this approximation may yield inaccurate results if X 
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is not close to the mean value µ, which occurs if the 

standard deviation of the random variable X is large [6]. 

 

4. FIRST-ORDER RELIABILITY INDEX 
APPROACH (RIA) 

 

This is a detailed probabilistic analysis based 

evaluation approach. In this case, the analysis is 

performed in two different random spaces: the original 

random design variable space (X-space) for design 

optimization and the independent standard normal space 

(U-space) for reliability analysis [5, 6]. During the 

reliability based multi-objective optimization process, a 

transformation between X and U space at design points 

must be carried out for estimating the probabilistic 

constraints. The transformation between two different 

random spaces at the design point dk is defined as: 
 

U=T(X) where dk = µk (X)   (4) 

 

It is assumed that, no correlation exists among 

the design variables. This requires probability 

distribution information for each input random variable. 

Most of the transformations from X to U-space are 

nonlinear, except in case of normal distribution. In RIA, 

the first-order safety reliability index is obtained by 

formulating an optimization problem with an equality 

constraint in U-space, which is the failure surface, as 
 

minimize      ||U|| 

subject to G (U) = 0 --   (5) 

 

The minimum point on the failure surface is called the 

 

Most Probable Point (MPP) u*
G(u) = 0 and the safety 

reliability index is defined by si = || u*G(u)=0|| . To 

find the solution to either an MPP search algorithm that 

has been specifically developed for the first-order 

reliability analysis or a general optimization algorithm 

can be used. Due to its simplicity and efficiency, the 

HL-RF method is a popular choice for conducting a 

reliability analysis in RIA, and the same has been used 

in this work. The iterative algorithm of the HL-RF 

method is, 
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is the steepest descent direction of the performance 

function Gu at µk . The first term on the right side of the 

iterative relation above finds a direction with the 

shortest distance to the failure surface, and the second 

term is a correction term to reach G (U). Post 

optimization, the probability of failure (Pf) is computed 

using the following formulae: 
 

 

 
 

Figure 1 - Geometric interpretation of deterministic and 

reliability-based design optimal solutions. 

 

5. ROBUSTNESS BASED MULTI-OBJECTIVE 
OPTIMIZATION FORMULATION 

 

In multi-objective robust design approach, the mean 

values of the objective functions are optimized while the 

coefficient of variation (CoV), which is the ratio 

between standard distribution and mean value, for each 

objective function is set to a small permissible value. 

This ensures insensitivity of objectives to uncertainty. In 
this approach, each constraint is formulated taking into 

account the standard deviation, mean value and target 

robustness level. The robustness (one-sided) based 

multi-objective optimization problem is stated as: 

 
The second set of constraints on the variation of is built 

at the runtime as a set of internal constraints. For each 
physical constraint, (ki ) denotes the desired sigma 

quality level. For example,  ki = 6.0 denotes six sigma 

quality/robustness level. In this case as well, the optimal 

pareto front is actually the “mean” optimal pareto front. 

Robustness criteria typically shifts the optimal design 



Journal of Manufacturing Engineering, 2007, Vol.2, Issue.2 

 

© SME 95 

points from a probable “ ridge” to a relative “ valley” 

(refer to figure. 2) where design solutions are less 

affected by parameter variations (robust design points).  

 
 

Figure 2 - Difference between robust solution and 

“optimal” solution. 

 

Usually (although not necessarily) robust solution is 

suboptimal to corresponding reliable solution, which is, 

in turn, suboptimal to deterministic optimal.  
 

6. MULTI-OBJECTIVE OPTIMIZATION 
APPROACH 

 

A multi-objective optimization problem 

(MOOP) involves a number of objective functions to be 

optimized simultaneously. One of the striking 

differences between single and multi-objective 

optimization is that in MOOP, the objective functions 

lie in a multi-dimensional space, in addition to the usual 

multi-dimensional design variable space. For each 

solution X in the design variable space, there exists a 
point in the objective space Z = [f1(X), f2(X), 

… ., fm(x)]. 

 

Mathematically this becomes a partial order and we 

require some higher-level information to transform this 

into a total order to enable comparison operations [8,9]. 

The output of a MOOP is not a single point, but a set of 

non-dominated points designated as pareto optimal set, 

which conforms to a partial order relation. A pareto 

optimal solution that is better with respect to one 

objective requires a compromise in at least one other 
objective [9]. There are two principal goals of multi-

objective optimization: 

1. Find a set of solutions close to the pareto optimal 

solutions, and  

2. Find a set of solutions, which are diverse enough 

to represent the entire spread of the pareto 

optimal front.  

After a set of non-dominated optimal solutions in 

objective space is found, user can then use higher-level 

qualitative information to make specific choices. For an 

ideal multi-objective optimization procedure, there are 

two steps [10]: 

 

1. Find a diverse pareto optimal set of non-dominated 
solutions. 

2. Choose one of the candidate optimal solutions 

based on higher-level information. 

 

ReliaGDOT internally uses the NSGA-II algorithm [10, 

11] for finding pareto optimal set has three basic 

features: 

 

1. It uses elitist principle for population generation. 

2. It uses an explicit diversity preserving mechanism, 

and 

3. It emphasizes non-dominated solutions in a 
population. 

There are two basic definitions used to enforce 

domination of one solution over the other:  

 

Definition 1 A solution x(i) is said to dominate the other 

solution x(j), if both the following conditions are true: 

 

1. The solution x(i) is no worse than x(j) all 

objectives. 

2. The solution x(i) is strictly better than x(j) in at 

least one objective. 
 

In presence of constraints, each solution can be either 

feasible or infeasible. The constrain-domination 

condition for any two solutions is defined as: 

 

Definition 2 A solution x(i) is said to ‘constrain 

dominate’ a solution x(j), if any of the following 

conditions are true:  

 

1. Solution x(i) is feasible and x(j) is not. 

2.Solutions x(i) and x(j) are both infeasible, but solution 

x(i) has a smaller constraint violation. 
3.Both solutions are feasible and solution x(i) dominates 

solution x(j) in the usual sense of definition 1 above. 

 

One has to select one pareto optimal point 

instead of many and this requires a higher level, user-

specified information. Mathematically, this operation 

converts a partial order relation (pareto optimal set) to a 

total order relation to enable comparison. Most of the 

time, the chosen point belongs to a region in the pareto 

optimal front that ‘bulges’ out the most and lie 

somewhat ‘in the middle’ of the front. This point is 
termed as the ‘knee point’. It is characterized by a point 

that lies farthest from the surface connecting each 

individual optimal point for each objective (refer to 

figure. 3). A point given by the optimal values of each 

individual objective is termed as the ‘utopia point’. This 
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point cannot be attained in practice in the presence of 

conflicting objectives.  

 
 

Figure  3 - The point (K) on the pareto-front having 

largest distance from line AB, connecting individual 
minima, is termed knee point 

 

7. NUMERICAL EXAMPLES 
 
7.1 Problem definition 

 

Two examples are considered in this study: (i) 

crashworthiness of an automotive rail section; (ii) 

automotive bumper system design for low velocity 

frontal impact. Automotive rail sections are supposed to 

absorb the most of impact energy in case of a frontal 

crash, while bumpers systems are designed to absorb a 
sizeable share of the impact energy in case of a low 

velocity impact and insulating other structural 

components from damage.  

 

1 Automotive rail section design 

 

This study considers a box-shaped, energy-

absorbing front-end rail structure (refer figure. 4). 

Crashworthiness is studied by crashing the rail-section 

into a rigid wall with a collision velocity of 6.67 m/sec. 

The rail section is fixed at the base and 4-noded linear 
elements are used with spot-welds connecting the top 

and bottom sections (refer figure. 4). The finite element 

models developed is solved using LS-DYNA. Failure 

plastic strain is specified in the material model for all 

models, but no strain-rate sensitivity is considered. The 

design variables considered are top and bottom 

thickness (t1 and t2) and material yield strength (σy). 

There is another linked design parameter in material 

young’s modulus (E). Thickness parameters are 

considered continuous while the material yield strength 

can attain a discrete set of values. The material young’ s 

modulus is related to its yield strength using the 
following relation:  

 

 
This linking relation ensures that young’s 

modulus can take only discrete values. The responses 

considered for meta model development are structural 

weight, maximum transmitted force (using SAE 1000 

filter), maximum intrusion, internal energy, crash pulse 

efficiency and energy absorption efficiency. The pulse 

efficiency and energy absorption efficiency are derived 
measures (composite function involving two primary 

responses) and computed as: 

Pulse efficiency (%),  

P =100*(Area under force-displacement curve / 

Fmax*Dmax)  

where,  Fmax = maximum transmitted force 

Dmax = maximum intrusion 

Design exploration is performed using Latin hypercube 

technique for selection of design points where 

numerical experiments are performed using finite 

element models. In this study, structural weight and 
energy absorption efficiency are treated as objectives 

with pulse efficiency as a constraint, in addition to 

constraints on maximum force, intrusion. 

 

 
Figure 4 - Representative front end (ULSAB) and Rail 

section 
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Response surface models up to 2-nd order (quadratic) 

are considered in this study. This approximate model is 

defined only within the specified design space. In all, 32 

points are generated using Latin Hypercube technique 

with three design variables for conducting “numerical 
experiments”. The Latin Hypercube technique is chosen 

because it covers the whole design space and is reported 

to have performed better than other techniques while 

modeling highly non-linear responses [7]. The 

permissible values of material yield strength variable 

are {0.20, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 

0.70}. 

 

2. Bumper system design  

 

The allowable intrusion is an important factor 

in the design of bumper systems. Smaller offsets 
between the bumper face and the first damageable 

vehicle component require new ideas for absorbing the 

energy of low-speed impacts with lower intrusion, while 

limiting the transmitted rail loads. Bumper designs must 

therefore satisfy two distinct and conflicting 

requirements:  

 Maximize energy absorption for a given 

packaging space. 

 Minimize maximum intrusion while limiting 

the transmitted rail loading. 

In low-speed impacts, the kinetic energy of the vehicle 
converted into work done on the bumper system. The 

overall energy to be dissipated during a rigid barrier 

impact is given by: 

 
Where  M = vehicle mass (kg); V = closing speed of 

vehicle (m/sec). 

 

Typically, a small amount of impact energy is absorbed 

by the attached vehicle components due to vibrations 

and vehicle compliance. Therefore, the actual energy 

required to be absorbed by the bumper is slightly less 

than the total dissipation energy given in Eq.8 and is 
represented by a factor η. Typical values for η for a 

barrier impact ranges from 0.82-0.90 [7]. The value 

taken for this study is 0.90. The energy to be dissipated 

by the bumper system is therefore given by: The value 

taken for this study is 0.90. The energy to be dissipated 

by the bumper system is therefore given by: 

 

 
The bumper system manages this energy by moving a 

force F (resistance to deformation) through a distance d 

(intrusion).The work done is given by the area under the 

force displacement curve (figure 5). 

 

 
Figure 5 - Ideal vs. Typical energy absorption model 
 

Since the bumper is not 100% efficient (see figure. 2), 

an efficiency factor (ε ) is included: 

 

 
 

This factor takes care of the situation where rail loading 

does not build-up immediately (which is the ideal 

situation resulting in square waveform). Force is related 

to deceleration of bumper system (a) as: 

 

  F=Ma  (12) 

 

Inserting Eq.(12) into Eq.(11) yields, 

 

 
 

Equating Eq. 9 and Eq. 13 provide the energy 

absorption efficiency: 

 

 
The ideal scenario for energy absorption is a square 

shaped force-displacement curve. But this requires 

instantaneous build-up for force and sustenance of the 

same over the complete crash event, which is not 

achievable at present. As an automobile collides with 

another object, both the occupant and the vehicle can 

undergo rapid changes in acceleration/deceleration 

profile. Increasing the level of energy absorption in the 

front end of the vehicle can significantly lower the 
vehicle’ s peak deceleration, resulting in lower occupant 

velocities relative to vehicle interior. Hence, greater the 

energy absorption, the lower the occupant velocity and 

less severe is the impact to the occupant in the 

passenger compartment. In this study, the responses 

considered are as follows:  

 Energy absorption efficiency (%). 

 Barrier intrusion. 

 Maximum force transferred to bumper system. 

 Maximum plastic strain (both EA and backup 

beam). 
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The design space, in terms of 6 design variables, is 

given illustrated in the table below: 
 

Table 1 - Design space definition for bumper system 

 

Design variable 

(mm)  

Lower 

limit 
Upper 

limit 

Outer Radii  1374 3075 

Inner Radii  1420 4111 

Centre depth  50 95 

EA thickness  1.5 2.5 

Rail span  1010 1483 

Backup beam 

thickness  

1.26 1.56 

 

Design of Experiments (DoE) was performed with 30 

experimental points using the Latin Hypercube strategy. 

The statistical parameters checked for transfer function 

quality are R2, R2 adjusted for each model and also p-

values for each term included in a model. These transfer 

functions are used in all optimization studies and the 

optimized solution is validated using LS-DYNA. 

 

7.1.1 Automotive rail section design 
optimization 

 
Here the structural weight (W) is minimized along 

with maximization of energy absorption efficiency (E). 

The constraints are on maximum transmitted force 

(Fmax) and maximum intrusion (Dmax) and crash pulse 

efficiency (P). The problem is formulated as follows:  

 

Minimize Structural weight (W) 
 

Maximize energy absorption efficiency (E) … (15) 

 
Such that, 

Fmax ≤ 200.0 kN 

Dmax ≤ 190.0 mm 

P ≥ 18 % 

0.50 ≤ t1,  t2 ≤ 2.0 

σy -> {0.20, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 

0.60, 0.65, 0.70} 

 
In case of reliability based optimization, all the design 

variables are assumed to be normally distributed with 

coefficient of variation of 0.05 (5%). The target 

reliability indices (ti ) for first two constraints are set to 

6.0 while the third constraint has a beta target value of 

3. The reliability based multi-objective design 

optimization (RBMODO) statement becomes: 

Minimize Structural weight (W) 

Maximize Energy absorption efficiency (E) …(15B) 
 

Such that 

 
Bumper system design optimization  
 
The bumper system multi-objective design optimization 

problem is formulated as: 

 

Maximize Energy absorption efficiency = f1 (X) 

Minimize Barrier intrusion        = f 2(X)---- (16) 

 

Subject to: 

Maximum transmitted force ≤ F limit 

Maximum plastic strain in EA ≤1.2  

Maximum plastic strain in beam ≤0.25 
 
In this study, limit of 100kN was set for maximum 

transmitted force. In case of reliability based 

optimization, all the design variables are assumed to be 

normally distributed with coefficient of variation of 0.05 

(5%). The reliability based multi-objective design 

optimization (RBMODO) statement becomes: 

 

Maximize Energy absorption efficiency   = f1 (X) 

Minimize Barrier intrusion               = f 2(X) --- (16A) 

 

Subject to: 

t1 0.6 Constraint on max. Force  

t2 0.6 -- Constraint on max. plastic strain in EA 

t3 0.6 -- Constraint on max. plastic strain in beam 

 

The corresponding robustness based multi-objective 
design optimization problem with all the design 

variables are assumed to be normally distributed with 

coefficient of variation of 0.05 is stated as: 

 

Maximize Energy absorption efficiency = f1 (X) 

Minimize Barrier intrusion = f 2(X) ---- (16B) 

 

Subject to 
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8. RESULTS & DISCUSSION 
 

8.1 Automotive rail section design optimization 
results 

 

The results of deterministic multi-objective optimization 

are summarized below: 

 

 

Table 2 a & b - Summary of results for deterministic 

multi-objective optimization 

 

Pareto 

point 

t1 t2  ̃y Knee 

Weight 

E (%) 

Knee 

point 

1.185 0.505 0.70 3.6792 
*(3.679) 

74.61 

(74.98) 

Minima 

W 

0.95 0.52 0.70 3.19 58.61 

Maxima 

W 

1.42 0.5 0.70  4.165 87.33 

 

*Quantities in brackets indicate analysis results obtained from 

LS- DYNA simulation. 
 

 

As can be seen, the crash pulse efficiency is relatively 

close to the constraint boundary in majority of the cases. 

At knee point, the design is not very close to any 

constraint boundary. Maximum force constraint is 

active when maximizing for energy absorption only. 

This design indicates higher structural weight, but crash 

pulse efficiency is also improved. Another interesting 

observation is that, different thickness for the two 
panels with higher yield strength steel (AHSS) is 

advocated for optimal performance. Higher yield 

strength seems better from energy absorption view 

point. While using reliability based optimization, the 

“optimal” pareto front shifts from that of deterministic 

version and depends on the target reliability indices 

used. In addition “optimal” pareto solution sets obtained 
using two different variants of safety reliability index 

computation method are plotted in the figure. 6 below. 

Here, the pareto optimal solutions corresponding to the 

knee point solution is taken for both RIA based and 

AMA based solution and reliability is computed for 

each constraint using MCS. In all cases 10000 samples 

were used and RMCS > 0.999 were obtained for all 

cases. It is observed from the results that the reliability 

based pareto optimal fronts and also the robust pareto 

optimal front have shifted below the corresponding 

deterministic pareto optimal front. This result is along 

expected lines, but another observation is that of a 
‘jump’ in the pareto optimal front. The same problem 

was run with increased number of generations (200 and 

400 generations) to check if it has really converged and 

make sure that such behaviour is not due to algorithmic 

issues. This discontinuity is observed in terms of energy 

absorption efficiency. For two pareto optimal points 

with very close structural weight gives a very different 

energy absorption efficiency (marked as ‘knee point’ 

and ‘significant point’ in table 3a-b). This ‘jump’ seem 

to be controlled by the constraint activity and material 

yield stress property (material yield stress does not 
appear in structural weight calculation so long as unit 

weight remains the same). Higher yield AHSS gives 

better energy absorption while satisfying all reliability 

constraints with pulse efficiency being very close to 

constraint boundary.  

 
Minimize Weight 

 

Figure  6 - Pareto optimal front obtained using different 

approaches 

 
It is also observed that the ‘span’ of the reliability based 

or robustness-based pareto optimal fronts are much 

Pareto 
point  

Fmax Dmax P (%) 

Knee point  162.37 

(161.2)  

166.7 

(164.82)  

19.26   

(19.32)  
Minima W  126.36 179.8 18.08 
Maxima E 197.82 156.33 19.92 
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smaller as compared to the deterministic front in this 

case. 

Table 3 a & b - Summary of results for reliability-based 

multi-objective optimization using RIA 

 
Pareto point t1 t2 ̃y Knee 

Weight 

E (%) 

Knee point 1.012 0.545 0.65 3.4142 
*(3.414) 

64.46 

(64.58) 

Minima W 0.021 0.5 0.60 3.3387 60.364 

Maxima W 1.052 0.52 0.65 3.4435 65.558 

Significant 

point 

1.056 0.501 0.60 3.41418 62.932 

*Quantities in brackets indicate analysis results obtained from LS-DYNA simulation. 
 

Pareto point β1 β2 β3 

Knee point 6.543 7.212 3.001 

Minima W 6.848 6.048 3.344 

Maxima W 6.028 7.432 3.11 

Significant point 6.021 6.40 3.775 

 
Such ‘jump’ or discontinuity can also indicate possible 

system instability in certain cases (e.g., dynamical 

systems). In this case, the robust pareto front almost 

coincides with the reliable pareto front. 
 

8.2 Bumper system design: results 
 

As the maximum transmitted force limit is 

increased, the barrier intrusion reduces and also the 
efficiency of the bumper increase. This situation is 

advantageous in both objectives. A higher value of 

limiting maximum transmitted force leads to better 

pulse (closer to a square pulse) and there is a threshold 

value of this quantity from the structural behaviour 

standpoint. The centre depth are at its upper limit of 95 

mm. EA thickness is on the higher side (approaching 

upper limit) for all points on the pareto front. The back-

up beam thickness bar chart indicates no extreme 

behaviour in terns of reaching the limit values. The 

constraint on maximum transmitted rail loading is active 
(e.g., close to the constraint boundary). The results of 

multi-objective optimization for two cases considered 

are summarized below:  

Table 4 - Summary of results for deterministic multi-

objective optimization for case 1  

(limiting force = 100kN) 

Pareto 

point 

intrusion 

(I) (mm) 

Energy 

absorption 

efficiency (ε) 

(%) 

Transmitted 

rail load(F) 

(kN) 

Knee 

point 

191.00 

(89.9) 

62.077 

(63.48) 

99.97 (99.9) 

Minima 

I 

88.535 59.92 99.98 

Maxima 96.8 62.7 99.92 

ε 

 

In this problem, the ‘span’ of the reliability-based and 
robustness-based pareto optimal fronts are much wider 

as compared to the deterministic front. The optimal 

front still shifts below their deterministic counterpart as 

expected. 

 
 

Figure 7 - Pareto optimal front with 100 kN rail loading 

constraint on bumper for different approaches 

 

Here, the pareto optimal solution 

corresponding to the knee point solution is taken for 
both RIA based and AMA based solution as before and 

reliability is computed for each constraint using MCS. 

In all cases 10000 samples were used. The computed 

reliability, RMCS > 0.9992 were observed for solution 

obtained using RIA for reliability index computation. In 

case of AMA, RMCS > 0.9989 were observed for the 

constraint. In this problem, the robust pareto front is 

more conservative than the reliable pareto front as 

expected.  

 

9. CONCLUSIONS 
 

This study illustrates use of an integrated probabilistic 

design optimization framework capable of supporting 

multi-disciplinary, multi-objective optimization process. 

This theme is central to any simulation based design 

synthesis approach. Different uncertainty (only aleatory 

uncertainty is considered in this study) quantification 
techniques have been studied in the context of multi-

objective optimization. The basic multi-objective 

optimization is performed using the GDOT software, 

developed by the author’s. When uncertainty is taken 

into consideration, the “optimal” pareto front shifts 

towards a “safer” region where parameter uncertainties 

no longer impact the feasibility of the optimal design 

solutions. As a preliminary observation, it can be seen 

that robustness based optimal” front is more “ 

conservative” , that is, it is further away from the 
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deterministic “ optimal” front as compared to the 

reliability-based optimal front. This also corroborates 

the view that the robust front is suboptimal to the 

reliable front. But this is still initial days and more 

numerical investigation for varying categories of 
problems are required before we can make a “strong” 

claim. In addition, in reliability based approaches, AMA 

looks more conservative in terms of computing the 

safety reliability index as compared to RIA approach. 

But this could only be valid if all uncertainties are 

modeled using normal distribution. One needs to test 

different types of probability distributions for modeling 

design parameters to put forth a claim in this regard. In 

future, performance measure approach (PMA) needs to 

be implemented for formulating the probabilistic 

constraints as another reliability based approach. The 

accuracy of adopted global response surface for 
probabilistic constraint modeling also should be 

investigated in detail. Looking at a broader picture, this 

methodology can potentially fill the gap between 

numerically optimized system development and 

simulation-driven digital product development. This, in 

turn, help realize numerical simulation-driven product 

development process by aiming to achieve designs that 

are “first time right”. 
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