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ABSTRACT 

Computer aided process planning (CAPP) is an important interface between computer aided design (CAD) 

and computer aided manufacturing (CAM). CAPP in the past is typically a knowledge-based approach, which is 

only capable of generating a feasible plan for a given part. The present work involves the application of a global 

search technique called Differential evolution for a quick identification of optimal or near optimal operation 

sequences. Minimization of sum of the total number of set-up changeovers and tool changeovers is taken as the 

objective function. Initially, the given part is represented as an assembly of form features, with details of geometric 

specifications, tolerance and surface finish requirements. To produce each of the form features, the required 

machining operations are selected. Next, feasibility constraints are considered among various machining operations. 

The proposed method then finds the optimal sequences within the minimum possible time. 
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1. INTRODUCTION

Computer aided process planning (CAPP) is 
defined as an activity that translates part design 

specifications from an engineering drawing into 

manufacturing operation instructions required to 

convert a product from its initial stage to 

predetermined shape. There are two basic approaches 

to CAPP: Variant and Generative. Variant approach 

is based on Group technology concepts like 

Classification and coding systems to select generic 

process plan from the existing master process plans 

developed for each part family and edits to suit the 

requirement of the part. In the Generative approach, 

synthesizing the part data with the information from 
manufacturing databases and decision rules generates 

a process plan. In any CAPP system, selection of the 

operations sequence is an essential activity for 

manufacturing a part economically. Although there 

exists a large number of CAPP systems in the 

literature, only a few have taken into consideration, 

the optimization of operation sequencing and the 

alternate sequence of operations. To determine the 

optimal sequence, Integer programming [1], Branch 

and Bound method [2] and Dynamic programming 

[3] have been used. Consideration of applicable 
constraints made the formulation of problem very 

difficult and is NP-hard in nature. This limited the 

application of the conventional methods. 

Shunmugam et al [4] applied Genetic algorithms for 

generating the optimal sequence of manufacturing 

operations. The present work proposes the 

application of a recently emerged metaheuristic 

called Differential evolution (DE). In his earlier work 

[5], the author has applied DE for finding the optimal 

machining parameters of a complex machining 

problem and obtained better results than the existing 

methods.    
 

2.IDENTIFICATION OF FORM FEATURES 
 

The form features of a product can be 

classified into primary, secondary and C-axis 

features. Primary features (cylinder, cone, face) 

represent the basic shape of the part. The secondary 

features (threads, grooves, chamfer, slot) and C-axis 

features (radial hole, key hole) reside on the primary 

features and add details to the shape of the part. 
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Depending on the type of form features, there may be 

a need to change the machining parameters, tool 

setups or machine tool. 

 

3. CONSTRAINTS 
 

A feasible sequence is the one, which does 

not violate any of the following feasibility 

constraints:  
 

3.1 LOCATION CONSTRAINT  
It is concerned with the examination of 

defined part features to determine which reference 

face is to be used to locate a particular feature. It 

refers to plane surfaces such as end or a face. The 

locating surface is to be machined prior to the 

reference surface. For example, for a rotational part, 

end face could be the reference feature. 

 

3.2 PRE-CONDITION OR NONDESTRUCTIVE 
CONSTRAINT   
 

This is taken into consideration so that the 

current machined features do not destroy the 

properties of features machined previously. For 

example, when thread and chamfer are two 

secondary features on a cylinder, chamfering must 

precede threading. 

 

3.3 DATUM-HOLDING OR GEOMETRIC 
TOLERANCE CONSTRAINT 
 

This refers to the datum requirements on 

features according to the geometric tolerance 

scheme. It results in the identification of features 

which must be machined in the same set-up, 

otherwise it would increase set-up time and cost.  

 

3.4 ACCESSIBILITY CONSTRAINT 
 
 It establishes precedence constraint 

among the associated features, since a secondary 

feature is defined as the one, which resides on 

primary feature. It is not possible to machine the 
secondary feature until the primary feature is 

formed.                                                         

 

4.DIFFERENTIAL EVOLUTION - PROPOSED 
METHOD 
 

Recently, evolutionary algorithms have 

received a lot of attention for solving a wide range of 

non-linear optimization problems. Evolutionary 

algorithms (EAs) mimic the metaphor of natural 

biological evolution, which adapt changing 

environments to find the optimum of a problem 

through evolving a population of candidate solutions. 

Among EAs, Genetic algorithms (GA) have got a lot 

of popularity in the recent past. Although several GA 

versions have been developed, they are not efficient 

when convergence speed is taken into consideration.  
 

DE is an exceptionally simple, fast and 

robust evolutionary computation method proposed 

by Storn and Price [6] and is more likely to find the 

true optimum of a problem.   

 

The following section brings out the major 

differences between GA and DE. In GA, all offspring 

are accepted and their parent strings are abandoned at 

the end of every generation regardless of their fitness 

values. This gives rise to a risk that a good parent 

string may be replaced with its deteriorated child 
string. Thus the improvement on the average 

performance of child population over parent 

population cannot be always guaranteed.  This does 

not occur in DE, as the child string has to compete 

with its parent to get place in the succeeding 

generation.  Second, in GA, parent strings with good 

fitness values are only be given chance to produce 

offspring without any consideration of the 

possibilities of generating better offspring by others.  

In DE, all solutions get the same chance of being 

selected as the parents with out dependence of their 
fitness values. These characteristics make DE 

perform better than GA. 

 

Currently there are several versions of DE 

which are classified based on the notation DE/x/y/z 

where x specifies the vector to be mutated, y is the 

number of difference vectors considered for mutation 

of x, and z stands for the crossover scheme. x 

represents either ‘rand’ (randomly chosen vector) or 

‘best’ (best vector of current population). For 

mutation, either single or two vector differences is 

used and accordingly y becomes either 1 or 2. z is 
either ‘bin’ (binomial) or ‘exp’ (exponential) 

depending upon the type of crossover scheme used.  

 

Price and Storn [7] have suggested ten 

different working strategies in total and also some 

guidelines for applying them to a specific problem. 

The variant DE/rand/1/bin has been used in present 
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work. The operators involved in the algorithm are 

explained in the following section. 

 

4.1. MUTATION 
 

In this phase, DE generates a mutant vector 

(vi,g+1), by adding a weighted difference of two 

population vectors to a third vector using the 

following equation: 

)( ,3,2,11, F grgrgrgi xxx 

                                                                 

 

where F>0 is a scaling factor, which controls the 

magnitude of the differential variation of (xr2,g - xr3,g). 

The vectors xr1, xr2, and xr3 are to be randomly 

selected and to be different from the current vector. 

Unlike other EAs, where perturbation occurs in 

accordance with a random quantity, DE uses 

weighted difference between solution vectors (target 

vectors) to perturb the population at each generation 

as expressed in the above. 
 
4.2 CROSSOVER 
 

Crossover is introduced in the algorithm to 

control the amount of diversity of mutant vectors.  

Mutant vector and target vector are subjected to 

crossover to generate trial vector (ui,g+1) based on the 

following equation: 
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Cr  Є  [0,1] is the crossover constant which represents 

the probability of trial vector that inherits parameter 

values from the mutant vector and D represents the 

number of dimensions of a vector.  

  
4.3 SELECTION 

The trial vector produced by the crossover 
operator is compared with the target vector to 

determine the member for the next generation. If the 

trial vector produces a smaller function value it is 

copied to next generation otherwise target vector is 

passed into next generation. 
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One iteration constitutes the execution of all the 

above three operators in sequential order.  The 

procedure continues until a stopping criterion is met. 

This criterion can be either to have the current best 

objective function value smaller than a specified 

value or the number of generations is equal to a 

predetermined maximum value.  

 
4.4 CHOICE OF CONTROL PARAMETERS   
 

Some guidelines are available in ref [8] to 

choose the control parameters N, F, and Cr . 

Normally, N is to be between 5 to 10 times the 

numbers of parameters in solution vector. F usually 

takes a value that ranges from 0.4 to 1.0. F=0.5 is a 

good initial choice and it can be increased if the 

population converges prematurely. On the other 

hand, a good value for Cr is 0.1; however to speed up 

convergence a greater value can be used. Although 

DE is used widely for continuous problems, yet it 
can also be used for solving NP-hard combinatorial 

problems. To solve the present combinatorial 

problem, the smallest position value (SPV) rule 

suggested by Tasgetiren et al. [9,10] is adopted. This 

is used to convert a continuous position vector into a 

permutation problem.  

 

5.CASE STUDY   
 

The part shown [11] in Figure 1 is taken as 

an example. Dimensional and geometrical tolerances 
along with other technical specifications are shown 

on the part drawing. The features involved in 

manufacturing the part are listed in Table 1. Each 

feature is coded with a numerical letter. Table 2 

exhibits the constraints obtained for the part.  

 

The objective is to determine the sequence 

of machining operations that corresponds to the 

minimum set-up change-overs and minimum tool 

change-overs. The following section illustrates the 

Differential Evolution (DE) algorithm as applied to 

the present problem.  
 

Table 3 illustrates an example of the 

solution representation of target vector xij,g. 

According    to    the    SPV     rule,   the smallest 

parameter value is xij,g = 0.169, so the dimension j=3 

is assigned to be the first feature
1i

P  = 3.The second 

smallest parameter value is  0.202, so the dimension j 

=10 is assigned to be the second feature and so on. In 
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other words, dimensions are sorted according to the 

SPV rule, i.e., according to the parameter values xij,g 

to construct the permutation
gijp ,

. This enables the 

algorithm to work with the floating values. Total 
score for each sequence is calculated as weighted 

sum of individual scores using the following 

equation: 

ah uwuwu 21   

 

The assignments for 
21,ww  depend on user 

preference. In the present work, 
21,ww  are taken 

to be 3 and 2 respectively. 
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Fig.1.Flange 

 

 

 
 

Table 1: Details of Features 

 

Identification number Name of Feature 

0 End Face 

1 End Face 

2 External cylinder 

3 Turn 

4 Step Bore 

5 Hole 5.19  

6 Chamfer 

7 Thread 

8 Cuts 

9 Hole 6  

10 Step Face 
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Table 2: Constraints 

 

    

Locating constraints                           02, 05, 04, 13, 17, 

                                                                    16, 18, 19, 110 

 

Accessibility constraints                            02, 310, 210, 54, 37, 38, 36 

                                                                    

 

Non-destruction constraints           67, 87, 810 

 

 

Geometric tolerance constraints           54, 05, 010 

 

 

 

 

Table 3: Solution representation of target vector 

 

Dimension xij,g 
Feature 

( gijp , ) 

0 0.500 3 

1 0.859 10 

2 0.365 8 

3 0.169 2 

4 0.569 0 

5 0.866 4 

6 0.611 6 

7 0.639 7 

8 0.233 1 

9 0.955 5 

10 0.202 9 

 

 

 

Table 4: Details of holding the features in the same setup 

 

Set 1                    0,2,5,4 

Set2                    3,8,6,7,10,9,1 

 
Table 5:  Adjacency templates 

 

S.No                Sequence of features 

1                 0  2 

2                 13 10 
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In the above equation, uh represents number of  

changes in each sequence and 

au = [number of out-of sequence features in 

adjacency-template ( i ) ] 

where i  represents the template under construction. 

Holding score: It is based on change of 

datum/reference features for holding the part for 

given sequence. Table 4 shows the features that can 

be machined in the same set-ups. 

Adjacency score: It is based on the adjacency of 

features and is evaluated for each sequence based on 

the number of the elements not matching with the 

sequence given in each template. Table 5 lists the 

adjacency templates. 
 

6. RESULTS AND DISCUSSION 
 

The proposed technique is coded in JAVA 

and executed on a Pentium IV with 2.8 GHz 

processor. This problem has multiple solutions. The 

various optimal sequences obtained are  0-2-5-4-1-3-

8-6-7-9-10,0-2-5-4-1-3-8-6-10-7-9, and 0-2-5-4-1-3-

6-8-7-10-9 with the total cost of 5 units. DE has 

taken only 10s to converge to the optimal solution.  

 

7. CONCLUSIONS 

 
 For a computer-aided process planning 

system (CAPP) to handle a part comprising a large 

number of interacting features, an efficient algorithm 

is needed for exploring and reducing the size of the 

search space of valid operation sequences. This work 

presents an application of a recently developed 

global optimization technique, Differential Evolution 

algorithm (DE), for finding the optimal operation 

sequences. Although several conventional 

optimization techniques are available to solve the 

NP-hard problems in the literature, their application 
is quite limited because of the possibility of getting 

trapped at local-optimal points and because of lack of 

robustness. The proposed method overcomes the 

above drawbacks. DE has simple structure and is 

powerful and robust algorithm for solving the NP-

hard problems. DE is more likely to find the 

function’s true optimum than other methods. Similar 

to Genetic algorithms and Simulated annealing, DE 

is a completely generalized method, as it has no 

restrictive assumptions about the objective function, 

parameter set or constraint set. 
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