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Abstract 
 Manufacturing organizations are increasingly concerned with statistical analysis as a tool for 

understanding and improving processes. With the release of a new statistical package, QESuite, 

designed for manufacturers, it is important to directly compare the included normality tests to guide the 

standards of manufacturing organizations. A common metric of the usefulness of a normality test is its 

power, the test’s ability to identify data that do not follow the normal distribution correctly. Through 

Monte Carlo simulation, the power of 6 normality tests: Anderson-Darling, Jarque-Bera, Kolmogorov-

Smirnov, Lilliefors (corrected KS), Shapiro-Wilk (Royston), and Ryan-Joiner; was evaluated at 

multiple sample sizes with different original distributions. The sample size of the data being tested 

greatly impacted the power of all the tests studied. As the sample size increased, the power of almost 

all the tests studied approached 1.0 (100%). The underlying distribution also showed an effect, with the 

power being higher for all tests when evaluating asymmetrical distributions than symmetric 

distributions. When the power was averaged across all distributions and the average ranks of each test 

across sample sizes were calculated, the following general order of highest power to lowest is 

recommended: Shapiro-Wilk (Royston), Lilliefors, Ryan-Joiner, Anderson-Darling, Jarque-Bera, 

Kolmogorov-Smirnov. 

Keywords:  quality engineering, normality testing, statistical process control, power comparison, type 

II error. 

 

1. Introduction 

Today, there are several statistical packages that 

each offer a variety of methods for evaluating the 

normality of a data set. With many options for collecting 

and analyzing data, manufacturing organizations are 

increasingly adopting statistical tools to increase their 

knowledge and understanding of manufacturing 

processes. [1, 11]. Organizations need to use an 

understanding of the differences between these methods 

to set standards for analyzing normality that is based on 

evidence and that upholds the integrity of the conclusions 

[1]. A standard metric of the usefulness of a test is the 

test’s power. The power of a statistical test represents the 

ability of the test to correctly reject the null hypothesis 

when it is false [7]. This is a valuable metric for the 

selectiveness of many tests for normality because the null 

hypothesis of these tests is that the data follow a normal 

distribution [3]; thus, the power for many tests for 

normality represents the probability that the test will 

correctly identify data that do not follow the normal 

distribution.  

The power of a normality test to correctly 

identify data that do not follow the normal distribution is 

often as important or even more important than 

identifying data that do follow the normal distribution 

correctly; this is especially true in manufacturing. The 

power of a hypothesis can also be expressed as 1-β, where 

β represents the probability of committing a Type II error 

[10]. Type II errors are often considered the customer’s 

risk, whereas the producer's risk is the probability of 

committing a Type I error (α). The probability of 

committing a Type II error (β) is the consumer's risk 

because it represents the risk that a failing condition is 

incorrectly accepted as passing. Because of the 

complementary relationship between β and power, tests 

with a higher power present a lower customer risk. In 

manufacturing, it is often advantageous to minimize the 

risk to the customer and to be able to provide evidence 

affirming this to the customer. 

Due to the complexity of calculating the power 

of Type II error [10], it is often more practical to estimate 

the power of a test through Monte Carlo simulation using 

data generated from alternate distributions [11]. Many 

comparisons have been conducted to determine the 
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relationship between normality tests and power rankings 

[6, 9, 11, 12]. The ranking of normality tests by power is 

especially important in manufacturing, an environment 

where customer demands drive a desire to minimize Type 

II errors, increase manufacturing integrity and quality 

standards, and a desire to minimize non-conformance and 

customer rejections [2]. As statistical packages become 

more common and affordable for manufacturers, there 

has been an increase in the desire for manufacturers to 

have robust analysis procedures based on scientific and 

technical research.  

Currently, no technical sources perform direct 

power comparisons of the six normality tests included in 

the statistical package QESuite. QESuite was specifically 

designed for use by manufacturing organizations, and 

thus, it is important to provide a direct comparison of the 

power rankings to help guide procedures and testing 

sequences. By leveraging the direct comparison results, 

organizations can develop standardized testing sequences 

that can assess normality by beginning with the most 

powerful test and continuing through less powerful tests 

if necessary. By designing standards that assess 

normality in this descending power order, the 

organization can always ensure that they provide the least 

risk to the customer while still upholding the normality 

assumption when appropriate. A deeper understanding of 

the power of different statistical tests can also allow 

manufacturers to set limits to the minimum acceptable 

power, allowing for a higher risk of Type II error on less 

critical dimensions and posing stricter limits on critical 

dimensions. This deeper understanding can also allow 

organizations to provide different testing sequences 

based on the symmetry of data and sample size, allowing 

for flexible yet strict standards that leverage statistical 

knowledge to provide the highest confidence to 

customers. 

2. Materials and Methods 

The methodology of this test is based on the 

methodology used by Razali et al. [9]. It is intended to be 

a replicate study with the addition of the Ryan-Joiner and 

Jarque-Bera tests.  

2.1. Simulation Procedure 
This study used data generated by Monte Carlo 

simulation of 12 different non-normal populations with 

4,000 data points. The alternative distributions studied 

were five symmetric distributions: Beta(2,2), t(300), 

t(10), t(7) & t(5) and seven asymmetric distributions: 

Beta(6,2), Beta(2,1), Beta(3,2), χ^2(20), Gamma(4,5), 

χ^2(4) and Gamma(1,5). 

The data was generated in Microsoft Excel, 

using the RAND() and corresponding inverse distribution 

functions for each selected distribution.  

After generating the data, it was analyzed using 

the QESuite.js NPM package in a node environment. 

10,000 trials of randomly selected samples were 

generated for each sample size (N) studied. The 10,000 

trials were generated using the JavaScript code Math. 

floor(Math. random()*4000). This script generates a 

random number between 0 (inclusive) and 1 (exclusive), 

then multiplies it by 4000 to allow the function to select 

any value in the population. The random value, now 

between 0 (inclusive) and 4000 (exclusive), is rounded 

down to the nearest integer using Math. floor(); this value 

is either pushed to the array of trial indices if it is unique 

or a new random value is generated if that index is 

already present. Using indices allows each sample in the 

population to be randomly selected only once per trial, as 

is expected behaviour when working with actual samples 

in a manufacturing environment. The indices represent 

the sample that corresponds to the zero-based index in the 

population; for example, index(random) = 0 is the first 

sample in the population.  

This study was performed at 15 different levels 

of sample size, where N = 10, 15, 20, 25, 30, 40, 50, 100, 

200, 300, 400, 500, 1000, 1500, 2000 samples. These 

levels were chosen to remain consistent with the 

comparison study by Razali et al. [9]. 

After all randomized trials were generated at 

each sample size level, the JavaScript program iterated 

through each sample size level and trial. The array of 

indices for each trial was used to construct arrays from 

each alternative distribution using the same indices for 

each trial. The new arrays of randomized samples were 

then assessed using the QESuite functions for each 

normality test at a significance level of α = 0.05. The raw 

value of each p-value was then saved in a raw data array 

for each distribution. The result of the hypothesis was 

added to the running total of correctly rejected null 

hypotheses for each distribution at the sample size level 

if the result was determined significant and the null 

hypothesis rejected. This total was saved and used to 

calculate the power of the test for each distribution at 

each sample size level by dividing it by the number of 

trials (10,000). This value, being between 0 and 1, 

represents each test's power. 

After performing all normality tests at each 

sample size, each distribution, and for all trials, the 

average at each sample size level for all distributions was 

calculated to determine a general power level at each 

sample size for all distributions for each test individually. 

This procedure was also used to calculate the average 
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power of each test (and sample size) for the grouped 

symmetric tests and asymmetric to determine the effect 

of symmetric vs asymmetric data. 

Scatterplots were generated in Excel to visualize 

the effect of sample size on the power of each test. A 

scatterplot was generated for each individual distribution, 

the symmetric and asymmetric groups, and the overall 

powers. 

3. Results 

All normality tests used in this study were 

performed using the QESuite statistical software, and 

significance was evaluated at α = 0.05. The values in the 

power comparison tables below are decimals 

representing the number of times the test correctly 

identified non-normal data (P ≤ 0.05) out of the 10,000 

trials at each sample size.  

3.1. Power Comparison for Symmetric Non-
normal Distributions  

Each table represents an individual alternative 

distribution to allow comparison of the power of each 

normality test based on the effect of sample size for each 

distribution. Figure 1 is a collection of the charts 

generated using the data found in the subsequent tables 

(Table 1 - 5). 

 

3.2. Power Comparison for General 
Symmetric Non-normal Distributions  

Table 6 represents the average power for each 

normality test at each sample size averaged across all 

symmetric alternative distributions studied. Table 7 

represents the rank of each test at each sample size, with 

the overall average across sample sizes at the bottom. 

Figure 2 is the chart generated to visualize the effect of 

sample size on the average power for all symmetric 

distributions studied. 

3.3. Power Comparison for Asymmetric Non-
normal Distributions  

Each table represents an individual alternative 

distribution to allow comparison of the power of each 

normality test based on the effect of sample size for each 

distribution. Figure 3 is a collection of the charts 

generated using the data found in the subsequent tables. 

 

Table 1 Power Comparison for Beta(2,2) Distribution

Beta(2,2) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors 

Ryan-

Joiner 

Shapiro-Wilk 

(Royston 

Exp.) 

10 0.045 0.0146 0 0.0432 0.028 0.0388 

15 0.0471 0.0045 0 0.0494 0.0207 0.0423 

20 0.0577 0.0037 0 0.0498 0.0212 0.0529 

25 0.0713 0.0008 0 0.0582 0.0239 0.0677 

30 0.0807 0.0012 0 0.0653 0.025 0.0791 

40 0.1073 0.0004 0 0.0727 0.0351 0.1123 

50 0.1357 0.0001 0 0.0862 0.0472 0.1549 

100 0.3262 0.0128 0 1 0.2323 0.4685 

200 0.7172 0.61 0 1 0.89 0.9368 

300 0.9355 0.9698 0 1 0.9998 0.9985 

400 0.991 0.9997 0 1 1 1 

500 0.9996 1 0 1 1 1 

1000 1 1 0 1 1 1 

1500 1 1 0 1 1 1 

2000 1 1 0 1 1 1 
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Table 2 Power Comparison for t(300) Distribution 

t(300) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.0485 0.0429 0.0547 0.9031 0.0449 0.9608 

15 0.0497 0.045 0.0252 0.9821 0.0485 0.9957 

20 0.0484 0.0419 0.0103 0.9973 0.045 0.9998 

25 0.0504 0.0417 0.0047 0.9996 0.0455 1 

30 0.0452 0.0408 0.0019 0.9999 0.0414 1 

40 0.0488 0.039 0.0004 1 0.0395 1 

50 0.0479 0.0353 0 1 0.036 1 

100 0.0438 0.0245 0 1 0.0333 1 

200 0.0395 0.0202 0 1 0.053 1 

300 0.0391 0.0168 0 1 0.1247 1 

400 0.0365 0.018 0 1 0.3892 1 

500 0.0298 0.0149 0 1 0.9186 1 

1000 0.0183 0.0126 0 1 1 1 

1500 0.0095 0.0118 0 1 1 1 

2000 0.0037 0.0056 0 1 1 1 

Table 3 Power Comparison for t(10) Distribution 

t(10) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.0651 0.0771 0.0583 0.9066 0.0757 0.9627 

15 0.0794 0.1024 0.0286 0.9833 0.0971 0.996 

20 0.0847 0.1154 0.0121 0.9973 0.1062 0.9998 

25 0.0877 0.1353 0.0053 0.9997 0.119 1 

30 0.0897 0.1441 0.002 0.9999 0.1268 1 

40 0.0981 0.1661 0.0005 1 0.1457 1 

50 0.1061 0.1947 0 1 0.1661 1 

100 0.1439 0.2741 0 1 0.2465 1 

200 0.2153 0.4158 0 1 0.4666 1 

300 0.2897 0.5251 0 1 0.723 1 

400 0.3857 0.6418 0 1 0.9304 1 

500 0.4584 0.7201 0 1 0.9986 1 

1000 0.798 0.95 0 1 1 1 

1500 0.9548 0.9956 0 1 1 1 

2000 0.9957 0.9999 0 1 1 1 
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Table 4 Power Comparison for t(7) Distribution 

t(7) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.0804 0.0959 0.06 0.9077 0.0931 0.963 

15 0.1044 0.1402 0.03 0.9834 0.1284 0.9963 

20 0.1145 0.1653 0.0127 0.9974 0.151 0.9998 

25 0.1237 0.1951 0.0054 0.9998 0.1746 1 

30 0.1319 0.2181 0.002 1 0.1922 1 

40 0.1528 0.2635 0.0006 1 0.2312 1 

50 0.17 0.3118 0 1 0.2721 1 

100 0.2639 0.4664 0 1 0.4274 1 

200 0.4353 0.6921 0 1 0.7268 1 

300 0.5986 0.8247 0 1 0.9153 1 

400 0.7332 0.9116 0 1 0.9919 1 

500 0.827 0.9512 0 1 1 1 

1000 0.9912 0.9995 0 1 1 1 

1500 1 1 0 1 1 1 

2000 1 1 0 1 1 1 

Table 5 Power Comparison for t(5) Distribution 

t(5) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.1085 0.1294 0.0633 0.9128 0.1236 0.964 

15 0.1462 0.1934 0.0324 0.984 0.1834 0.9967 

20 0.1683 0.2384 0.0133 0.9975 0.221 0.9998 

25 0.1983 0.2877 0.0056 0.9998 0.2641 1 

30 0.2158 0.3281 0.0022 1 0.2936 1 

40 0.2653 0.4042 0.0007 1 0.3667 1 

50 0.3063 0.4688 0 1 0.4283 1 

100 0.4849 0.6843 0 1 0.6557 1 

200 0.7636 0.9045 0 1 0.9205 1 

300 0.8989 0.9694 0 1 0.988 1 

400 0.9674 0.9936 0 1 0.9997 1 

500 0.9889 0.9989 0 1 1 1 

1000 1 1 0 1 1 1 

1500 1 1 0 1 1 1 

2000 1 1 0 1 1 1 
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Fig. 1 Collection of Power Comparison Charts for Symmetric Non-normal Distributions 

Table 6 Average Power Across All Symmetric Distributions 

Average Power Across All Symmetric Distributions 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston 

Exp.) 

10 0.0695 0.07198 0.04726 0.73468 0.07306 0.77786 

15 0.08536 0.0971 0.02324 0.79644 0.09562 0.8054 

20 0.09472 0.11294 0.00968 0.80786 0.10888 0.81042 

25 0.10628 0.13212 0.0042 0.81142 0.12542 0.81354 

30 0.11266 0.14646 0.00162 0.81302 0.1358 0.81582 

40 0.13446 0.17464 0.00044 0.81454 0.16364 0.82246 

50 0.1532 0.20214 0 0.81724 0.18994 0.83098 

100 0.25254 0.29242 0 1 0.31904 0.8937 

200 0.43418 0.52852 0 1 0.61138 0.98736 

300 0.55236 0.66116 0 1 0.75016 0.9997 

400 0.62276 0.71294 0 1 0.86224 1 

500 0.66074 0.73702 0 1 0.98344 1 

1000 0.7615 0.79242 0 1 1 1 

1500 0.79286 0.80148 0 1 1 1 

2000 0.79988 0.8011 0 1 1 1 
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Table 7 Rank and Average Rank Across All Symmetric Distributions 

Rank and Average Rank Across All Symmetric Distributions 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors 

Ryan-

Joiner 

Shapiro-Wilk 

(Royston 

Exp.) 

10 5 4 6 2 3 1 

15 5 3 6 2 4 1 

20 5 3 6 2 4 1 

25 5 3 6 2 4 1 

30 5 3 6 2 4 1 

40 5 3 6 2 4 1 

50 5 3 6 2 4 1 

100 5 4 6 1 3 2 

200 5 4 6 1 3 2 

300 5 4 6 1 3 2 

400 5 4 6 1 3 1 

500 5 4 6 1 3 1 

1000 5 4 6 1 1 1 

1500 5 4 6 1 1 1 

2000 5 4 6 1 1 1 

Avg 5 3.6 6 1.466666667 3 1.2 

Avg 

Rank 5 4 6 2 3 1 
 

 
Fig. 2 Average Power Across All Symmetric Distributions 
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Table 8 Power Comparison for Beta(6,2) Distribution 

Beta(6,2) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.0951 0.0695 0 0.0866 0.0943 0.094 

15 0.1351 0.0907 0 0.1076 0.1297 0.1494 

20 0.1836 0.1155 0 0.137 0.1764 0.2116 

25 0.2271 0.1273 0 0.1677 0.2142 0.2702 

30 0.2666 0.1488 0 0.1944 0.2603 0.3276 

40 0.3672 0.2017 0 0.2535 0.3683 0.4637 

50 0.4635 0.2611 0 0.3093 0.4793 0.5921 

100 0.8374 0.6575 0 1 0.9039 0.9458 

200 0.9965 0.9941 0 1 1 1 

300 0.9999 1 0 1 1 1 

400 1 1 0 1 1 1 

500 1 1 0 1 1 1 

1000 1 1 0 1 1 1 

1500 1 1 0 1 1 1 

2000 1 1 0 1 1 1 

Table 9 Power Comparison for Beta(2,1) Distribution 

Beta(2,1) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.1227 0.0506 0 0.0987 0.1039 0.1229 

15 0.1846 0.0524 0 0.1319 0.1422 0.2014 

20 0.2677 0.0508 0 0.1774 0.2088 0.3094 

25 0.3506 0.0526 0 0.2306 0.2727 0.4118 

30 0.4327 0.057 0 0.2683 0.3497 0.511 

40 0.585 0.0776 0 0.3688 0.5166 0.6983 

50 0.7352 0.1155 0 0.4635 0.6963 0.8446 

100 0.9842 0.7348 0 1 0.9933 0.9989 

200 1 1 0 1 1 1 

300 1 1 0 1 1 1 

400 1 1 0 1 1 1 

500 1 1 0 1 1 1 

1000 1 1 0 1 1 1 

1500 1 1 0 1 1 1 

2000 1 1 0 1 1 1 
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Table 10 Power Comparison for Beta (3,2) Distribution 

Beta (3,2) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.0523 0.0249 0 0.0491 0.0388 0.0471 

15 0.0563 0.0189 0 0.0549 0.0368 0.0548 

20 0.0727 0.0147 0 0.063 0.0376 0.0713 

25 0.0886 0.0109 0 0.0735 0.0441 0.0874 

30 0.099 0.0112 0 0.0822 0.0478 0.103 

40 0.1363 0.0081 0 0.103 0.0687 0.1432 

50 0.1719 0.0111 0 0.1179 0.0914 0.195 

100 0.3819 0.0399 0 1 0.3203 0.5154 

200 0.7863 0.616 0 1 0.9231 0.9446 

300 0.9624 0.9686 0 1 1 0.9989 

400 0.995 0.9994 0 1 1 1 

500 0.9991 0.9999 0 1 1 1 

1000 1 1 0 1 1 1 

1500 1 1 0 1 1 1 

2000 1 1 0 1 1 1 

Table 11 Power Comparison for χ2  (20) Distribution 

𝒕𝒘𝒐𝝌𝟐(𝟐𝟎) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.0819 0.0788 0.3011 0.3623 0.0888 0.3729 

15 0.109 0.117 0.4058 0.4711 0.1248 0.5022 

20 0.1308 0.1339 0.5093 0.571 0.1443 0.6124 

25 0.1604 0.1723 0.5891 0.6548 0.1894 0.7086 

30 0.1863 0.2012 0.6587 0.7192 0.2183 0.777 

40 0.2387 0.2583 0.7591 0.8164 0.2852 0.8756 

50 0.2792 0.3115 0.8347 0.8805 0.3463 0.9285 

100 0.526 0.5825 0.9736 1 0.6528 0.9982 

200 0.8521 0.9067 0.9993 1 0.9603 1 

300 0.9651 0.9876 1 1 0.9998 1 

400 0.9947 0.999 1 1 1 1 

500 0.9996 1 1 1 1 1 

1000 1 1 1 1 1 1 

1500 1 1 1 1 1 1 

2000 1 1 1 1 1 1 
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Table 12 Power Comparison for Gamma(4,2) Distribution 

Gamma(4,2) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.1368 0.1237 0.7823 0.828 0.1426 0.839 

15 0.2044 0.1919 0.8947 0.9298 0.2233 0.9422 

20 0.2653 0.2381 0.9517 0.9728 0.2931 0.9803 

25 0.3401 0.3102 0.9752 0.9875 0.3762 0.9922 

30 0.398 0.3647 0.9871 0.9947 0.4491 0.9969 

40 0.5109 0.4772 0.9962 0.9989 0.5754 0.9997 

50 0.6188 0.5822 0.9996 1 0.6869 1 

100 0.9219 0.9103 1 1 0.9649 1 

200 0.9987 0.9991 1 1 1 1 

300 1 1 1 1 1 1 

400 1 1 1 1 1 1 

500 1 1 1 1 1 1 

1000 1 1 1 1 1 1 

1500 1 1 1 1 1 1 

2000 1 1 1 1 1 1 

Table 13 Power Comparison for χ2 (4) Distribution 

𝝌𝟐(𝟒) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.2335 0.1899 0.222 0.4208 0.2465 0.4362 

15 0.368 0.2948 0.2855 0.5559 0.388 0.5874 

20 0.4894 0.3896 0.3053 0.661 0.5178 0.706 

25 0.6011 0.4823 0.3006 0.7441 0.6354 0.7993 

30 0.6891 0.5709 0.2995 0.8058 0.7265 0.861 

40 0.8258 0.705 0.3302 0.891 0.8595 0.942 

50 0.9028 0.8184 0.3034 0.9347 0.9351 0.9769 

100 0.9989 0.9958 0.2351 1 0.9998 1 

200 1 1 0.1216 1 1 1 

300 1 1 0.0573 1 1 1 

400 1 1 0.0301 1 1 1 

500 1 1 0.0182 1 1 1 

1000 1 1 0.0001 1 1 1 

1500 1 1 0 1 1 1 

2000 1 1 0 1 1 1 
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Table 14 Power Comparison for Gamma(1,5) Distribution 

Gamma(1,5) 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.4287 0.2951 0.2085 0.8084 0.4359 0.8214 

15 0.6417 0.4558 0.1472 0.9139 0.6495 0.9276 

20 0.7923 0.5916 0.0937 0.9635 0.8082 0.9734 

25 0.8941 0.7053 0.0537 0.9851 0.9074 0.9926 

30 0.9434 0.7928 0.0347 0.9938 0.9566 0.997 

40 0.9878 0.9115 0.0161 0.9989 0.9925 0.9997 

50 0.9979 0.9692 0.0061 0.9995 0.999 1 

100 1 1 0.0001 1 1 1 

200 1 1 0 1 1 1 

300 1 1 0 1 1 1 

400 1 1 0 1 1 1 

500 1 1 0 1 1 1 

1000 1 1 0 1 1 1 

1500 1 1 0 1 1 1 

2000 1 1 0 1 1 1 

 

 
 

Fig. 3 Collection of Power Comparison Charts for Asymmetric Non-normal Distributions
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3.4. Power Comparison for General 
Asymmetric Non-normal Distributions  

Table 15 represents the average power for each 

normality test at each sample size averaged across all 

asymmetric alternative distributions studied. Table 16 

represents the rank of each test at each sample size, with 

the overall average across sample sizes at the bottom. 

Figure 4 is the chart generated to visualize the effect of 

sample size on the average power across all asymmetric 

distributions studied. 

3.5. Average Power Comparison for All 
Selected Non-normal Distributions  

Table 17 represents the average power for each 

normality test at each sample size averaged across all 

alternative distributions studied. Table 18 represents the 

rank of each test at each sample size, with the overall 

average across sample sizes at the bottom. Figure 5 is the 

chart generated to visualize the effect of sample size on 

the power averaged across all distributions studied. 

Table 15 Average Power Across All Asymmetric Distributions 

Average Power Across All Asymmetric Distributions 

N 

Anderson-

Darling 

Jarque-Bera 

Kolmogorov-

Smirnov 

Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.164428571 0.118928571 0.216271429 0.379128571 0.1644 0.3905 

15 0.242728571 0.1745 0.2476 0.452157143 0.242042857 0.480714286 

20 0.314542857 0.219171429 0.265714286 0.506528571 0.312314286 0.552057143 

25 0.380285714 0.265842857 0.274085714 0.549042857 0.377057143 0.608871429 

30 0.430728571 0.306657143 0.282857143 0.579771429 0.429757143 0.653357143 

40 0.521671429 0.377057143 0.300228571 0.632928571 0.523742857 0.731742857 

50 0.595614286 0.438428571 0.306257143 0.6722 0.6049 0.791014286 

100 0.807185714 0.702971429 0.315542857 1 0.833571429 0.922614286 

200 0.947657143 0.930842857 0.302985714 1 0.983342857 0.992085714 

300 0.989628571 0.993742857 0.2939 1 0.999971429 0.999842857 

400 0.998528571 0.999771429 0.290014286 1 1 1 

500 0.999814286 0.999985714 0.288314286 1 1 1 

1000 1 1 0.285728571 1 1 1 

1500 1 1 0.285714286 1 1 1 

2000 1 1 0.285714286 1 1 1 
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Table 16 Rank and Average Rank Across All Asymmetric Distributions 

Rank and Average Rank Across All Asymmetric Distributions 

N 
Anderson-

Darling 

Jarque-

Bera 

Kolmogorov-

Smirnov 
Lilliefors 

Ryan-

Joiner 

Shapiro-

Wilk 

(Royston 

Exp.) 

10 4 6 3 2 5 1 

15 4 6 3 2 5 1 

20 3 6 5 2 4 1 

25 3 6 5 2 4 1 

30 3 5 6 2 4 1 

40 4 5 6 2 3 1 

50 4 5 6 2 3 1 

100 4 5 6 1 3 2 

200 4 5 6 1 3 2 

300 5 4 6 1 2 3 

400 5 4 6 1 1 1 

500 5 4 6 1 1 1 

1000 1 1 6 1 1 1 

1500 1 1 6 1 1 1 

2000 1 1 6 1 1 1 

Avg 3.4 4.266666667 5.466666667 1.466666667 2.733333333 1.266666667 

Avg 

Rank 4 5 6 2 3 1 

 

 
 

Fig. 4 Average Power Across All Asymmetric Distributions 
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Table 17 Average Power Across All Distributions Studied 

Average Power Across All Distributions Studied 

N 
Anderson-

Darling 
Jarque-Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 0.124875 0.099366667 0.14585 0.527275 0.126341667 0.5519 

15 0.177158333 0.14225 0.154116667 0.595608333 0.181033333 0.616 

20 0.22295 0.174908333 0.159033333 0.632083333 0.22755 0.659708333 

25 0.266116667 0.210125 0.161633333 0.658366667 0.272208333 0.69415 

30 0.2982 0.239908333 0.165675 0.676958333 0.307275 0.72105 

40 0.360333333 0.292716667 0.175316667 0.7086 0.3737 0.769541667 

50 0.411275 0.339975 0.17865 0.732633333 0.432 0.807666667 

100 0.576083333 0.531908333 0.184066667 1 0.619183333 0.910566667 

200 0.733708333 0.763208333 0.176741667 1 0.828358333 0.990116667 

300 0.807433333 0.855166667 0.171441667 1 0.895883333 0.999783333 

400 0.841958333 0.880258333 0.169175 1 0.9426 1 

500 0.858533333 0.890416667 0.168183333 1 0.9931 1 

1000 0.900625 0.913508333 0.166675 1 1 1 

1500 0.913691667 0.917283333 0.166666667 1 1 1 

2000 0.916616667 0.917125 0.166666667 1 1 1 

Table 18 Rank and Average Rank Across All Distributions Studied 

Rank and Average Rank Across All Distributions Studied 

N 
Anderson-

Darling 
Jarque-Bera 

Kolmogorov-

Smirnov 
Lilliefors Ryan-Joiner 

Shapiro-Wilk 

(Royston Exp.) 

10 5 6 3 2 4 1 

15 4 6 5 2 3 1 

20 4 5 6 2 3 1 

25 4 5 6 2 3 1 

30 4 5 6 2 3 1 

40 4 5 6 2 3 1 

50 4 5 6 2 3 1 

100 4 5 6 1 3 2 

200 5 4 6 1 3 2 

300 5 4 6 1 3 2 

400 5 4 6 1 3 1 

500 5 4 6 1 3 1 

1000 5 4 6 1 1 1 

1500 5 4 6 1 1 1 

2000 5 4 6 1 1 1 

Avg 4.533333333 4.666666667 5.733333333 1.466666667 2.666666667 1.2 

Avg Rank 4 5 6 2 3 1 
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4. Discussion 

The effect of sample size showed a dramatic 

increase in the test’s power as the sample size increased. 

The effect of the underlying distribution of the data 

impacted the power of the tests, with all tests exhibiting 

a higher power with distributions that are less similar to 

the normal distribution. In a manufacturing setting, the 

underlying distribution of data cannot truly be known. 

Therefore, it is generally more helpful to distinguish 

between symmetric data and non-symmetric data, which 

could allow organizations to have a separate sequence of 

tests based on whether the data is determined to be 

symmetric or asymmetric. If an organization decides to 

discriminate between symmetric and asymmetric data, a 

standard benchmark for symmetry must be determined.  

When comparing the results of this study to those 

reported by Razali et al. [9], the study which this one 

was designed to replicate, the results are similar. In 

general, the Shapiro-Wilk (Royston) test is the most 

powerful, however for some sample sizes between 100 & 

300-400, the Lilliefors will outperform the Shapiro-Wilk 

(Royston), but very shortly after (400 samples), the 

Shapiro-Wilk (Royston)  converges to 100% rejection of 

the null hypothesis, and both are equally effective, at 

100% power. Razali et al. [9] did not include the Ryan 

Joiner Test in their study, so no comparison can be made 

as to its placement. Using the results of this study, it can 

be concluded that the Ryan-Joiner is, in general, a good 

third option because it also converges to 1.0 around 400 

to 500 samples. The Anderson-Darling and Jarque-Bera 

tests performed very similarly throughout all sample size 

levels, with the Anderson-Darling performing slightly 

better at smaller sample sizes (up to about 100-200) and 

the Jarque-Bera being more powerful at sample sizes 

larger than that. Neither the Anderson-Darling nor 

Jarque-Bera converged to 1.0 by the 2,000 sample trials, 

instead seeming to level off at a power of about 0.92. The 

Kolmogorov-Smirnov test performed the worst of all 

tests studied by a large margin. This is likely due to the 

significance level (α = 0.05) because when looking at the 

raw output of the p-values, most were close to 0.10 – 

0.15. However, some p-values were extremely high, and 

due to the evidence that other tests are extremely 

powerful, the KS test is not recommended for extensive 

use. 

 

 

Fig. 5 Average Power for All Distributions Studied 
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5. Conclusion 

Based on the average rankings across 

distributions and sample sizes, the following general 

orders, Table 19, have been proposed. These general 

orders are broken down into three columns: the suggested 

order for symmetric distributions, the suggested order for 

asymmetric distributions, and the suggested order for 

general distributions, disregarding symmetry. There is no 

difference in the testing order of the first three tests for 

all distributions studied. The recommended order of the 

first three tests, regardless of distribution or sample size, 

is: 1. Shapiro-Wilk(Royston), 2. Lilliefors, and 3. Ryan-

Joiner.

Table 19  Proposed Testing Order of Normality Tests 

Proposed series (general sample size) 

Rank Symmetric distributions Asymmetric distributions General distribution 

1 Shapiro-Wilk (Royston Exp.) Shapiro-Wilk (Royston Exp.) Shapiro-Wilk (Royston Exp.) 

2 Lilliefors Lilliefors Lilliefors 

3 Ryan-Joiner Ryan-Joiner Ryan-Joiner 

4 Jarque-Bera Anderson-Darling Anderson-Darling 

5 Anderson-Darling Jarque-Bera Jarque-Bera 

6 Kolmogorov-Smirnov Kolmogorov-Smirnov Kolmogorov-Smirnov 
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