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Abstract 

 This study investigates the optimization of Electrical Discharge Machining (EDM) parameters 

for Inconel 718 using a copper electrode, focusing on improving material removal rate (MRR) and 

minimizing surface roughness (Ra). A full factorial design of experiments (DOE) was employed with 

three key input parameters: pulse on time, pulse off time, and peak current. Regression models and 

machine learning algorithms were applied to predict response outcomes, with statistical validation 

through ANOVA and multi-objective optimization using desirability functions. The optimal parameters 

achieved an MRR of 54.12 mm³/min and Ra of 3.38 µm. The findings demonstrate the effectiveness of 

the experiments' full factorial design in enhancing EDM performance, supporting its adoption for 

precision machining of nickel-based superalloys. 

Key Words: Inconel 718, EDM, MRR, Ra, Machine Learning predictive model, full factorial, pulse on 

and off, peak current

1. Introduction 

Electrical Discharge Machining (EDM) has 

become an essential non-conventional machining 

technique for hard-to-cut materials, especially in 

aerospace, automotive, and biomedical industries [1]. 

Among these materials, Inconel 718 is a known nickel-

based superalloy due to its excellent mechanical strength, 

corrosion resistance, and thermal stability [2]. However, 

its superior properties also make it extremely difficult to 

machine using conventional techniques, often leading to 

excessive tool wear and poor surface integrity [3]. 

EDM addresses these challenges by removing 

material in a dielectric fluid through electrical discharges 

between a tool electrode and the workpiece. Despite its 

effectiveness, the EDM process is highly sensitive to 

input parameters such as pulse-on time, pulse-off time, 

and peak current. These factors significantly influence 

critical response variables like Material Removal Rate 

(MRR) and Surface Roughness (Ra), which in turn affect 

productivity and component quality [4]. 

Recent advances in modelling and 

computational optimisation have enabled the application 

of machine learning (ML) to manufacturing processes. 

ML techniques offer powerful tools for predictive 

modelling, pattern recognition, and multi-objective 

optimisation, particularly when traditional analytical 

methods fall short due to process complexity and 

nonlinear interactions [5].  This shift is especially 

relevant in EDM, where empirical relationships are often 

difficult to generalise across material and process 

conditions [6-10]. 

This study integrates a full factorial design of 

experiments (DOE) with regression analysis and ML-

based predictive modelling to optimise EDM parameters 

for Inconel 718. A desirability function approach is 

employed to minimise Ra and maximise MRR 

simultaneously. The novelty of this work lies in 

combining conventional experimental design with 

modern data-driven optimisation techniques, offering a 

more accurate and adaptable framework for EDM 

parameter tuning. 

 

2. Materials and Methods 

This study was designed to optimise the 

Electrical Discharge Machining (EDM) process 

parameters specifically for Inconel 718, aiming to 

achieve a high material removal rate (MRR) alongside 

minimal surface roughness (Ra). The experimental 

methodology combined a full factorial design of 

experiments (DOE) with regression analysis and machine 

learning techniques to ensure robust process optimisation 

and accurate predictive modelling. Key process 

parameters, namely, pulse-on time, pulse-off time, and 

peak current, were systematically varied and analysed 

using statistical and data-driven approaches. The 

carefully structured methodology facilitated reliable data 
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collection, ensured repeatability across experiments, and 

provided a sound basis for evaluating the optimal 

machining conditions tailored to Inconel 718. 

 

2.1 Experimental Setup 
All machining experiments were conducted 

using the EDMN450CNC machine, guaranteeing precise 

control and repeatability over the selected process 

variables. The workpiece used was Inconel 718, a nickel-

based superalloy renowned for its strength and thermal 

stability but recognized for its difficult machinability 

with conventional methods. For the electrode, high-

purity copper was chosen due to its excellent electrical 

conductivity and low wear characteristics, both crucial 

for maintaining consistent and efficient EDM 

performance. Deionised water served as the dielectric 

fluid throughout the machining, effectively removing 

debris from the gap and creating stable conditions for 

electrical discharges during the EDM process. 

 

2.2 Design of Experiments 
A full factorial design was utilised in this study, 

providing comprehensive insight into the effects and 

interactions of the process variables. Each of the three 

control parameters—pulse-on time (Ton), pulse-off time 

(Toff), and peak current (Ip)—was set at three distinct 

levels, resulting in a total of 27 experimental runs. 

Specifically, pulse-on time was varied at 100, 150, and 

200 microseconds to assess its impact on machining 

energy and outcome. Meanwhile, pulse-off time was 

adjusted among 20, 40, and 80 microseconds to evaluate 

its influence on the cooling period and debris removal. 

The peak current varied at 6, 10, and 15 amperes, 

considering its direct effect on material removal and 

surface finish. MRR and Ra, the primary response 

parameters, were systematically measured in each run, 

providing a clear assessment of machining efficiency and 

surface quality for this challenging superalloy. 

 
 
2.3 Measurement Tools 

The material removal efficiency was quantified 

using the weight loss method, where the workpiece was 

weighed before and after machining, and the difference 

in mass over the machining time was used to calculate the 

MRR. For surface roughness determination, a Surface 

Roughness Tester model KR220 was employed, offering 

precise measurement of ‘Ra’ to characterize the final 

quality of the machined surface. These measurement 

approaches ensured a reliable, repeatable, and accurate 

assessment of machining performance throughout the 

study. 

Table 1 Process Parameter Levels 

Parameter 
Level 

I 

Level 

II 

Level 

III 

Pulse-on (Ton, 

µs) 
100 150 200 

Pulse-off (Toff, 

µs) 
20 40 80 

Current (Ip, A) 6 10 15 

3. Results and Discussion 

3.1 ANOVA and Regression Modelling 

The experimental data were analyzed using 

ANOVA and regression modelling to identify the 

significance and strength of each process parameter on 

the two main responses: surface roughness (Ra) and 

material removal rate (MRR). 

The effects of input variables and their interactions were 

quantitatively described using regression equations, 

developed from experimental data: 

 

Ra = -0.9185 - 0.0389(Current) + 0.0265(Pulse-on) + 

0.0696(Pulse-off) + 0.0019(Current*Pulse-on) - 

0.0004(Current*Pulse-off) - 0.0004(Pulse-on*Pulse-off) 

MRR = -18.6053 + 7.1876(Current) - 0.0156(Pulse-on) - 

0.0825(Pulse-off) 
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Fig. 1 Contour Graphs for Multi-Objective Optimisation Using Desirability Function 

 

 
 

Fig. 2 Multi-Objective Optimisation via Full Factorial Design and Desirability Function 

 

3.2 Optimization 

A multi-objective optimization was conducted 

using the desirability function, concurrently targeting the 

minimization of Ra and maximization of MRR. Contour 

plots (Fig. 1) visually illustrate the trade-offs between 

these two objectives.  

 

 

Comprehensive optimization through a full 

factorial design (Fig. 2) identified suitable parameter sets 

for each objective, as summarized in Table 2. 
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Table 2 Optimal Parameters for Ra and MRR 

Parameter 
Ra 

Optimization 

MRR 

Optimization 

Current (A) 6 15 

Pulse-on (µs) 100 100 

Pulse-off (µs) 40 40 

Ra (µm) 3.38 4.34 

MRR 

(mm³/min) 
29.6 54.1 

4. Conclusions 

This study validates the use of machine learning 

algorithms for optimising EDM process parameters in the 

machining of Inconel 718. Peak current and pulse-on 

time were key variables significantly affecting MRR and 

Ra. Multi-objective optimisation yielded ideal 

combinations for enhanced machining efficiency and 

surface quality. The methodology is practical for future 

innovative manufacturing systems, particularly high-

performance alloys. 
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