Deformation Behaviors Investigation of CoCr Alloy Lattice Structures under Compression Test

Authors

DOI:

https://doi.org/10.37255/jme.v18i1pp001-010

Keywords:

Lattice Structures, Compression Test, Digital Image Processing

Abstract

ith the development of the additive manufacturing method, the production of lattice structures with complex geometries attracts increasing attention. These lattice structures can be designed with the desired properties, and they are encountered in many areas such as automotive, aerospace and aviation, and manufacturing industries, as they offer the freedom to control their physical, mechanical and geometric properties. The high strength characteristic of lattice structures that can be designed at any scale makes these structures useful for producing different designs. Since the mechanical responses of the lattice structures depend on the lattice design parameters, such as the large number of independent struts forming the lattice, cell size and cell geometry, the mechanical behaviour of these structures should be examined. In this study, a porous lattice structure with four different cell models, namely Dode Medium, Diamond, Rhombic Dodecahedron, and Dode Thin, was produced by Selective Laser Melting (SLM) method. In order to reveal the mechanical properties and deformation responses of the porous lattice structures, they were analyzed under compression test and by the finite element method, and experimental and numerical procedures were compared. The effect of the compression test on the lattice properties and how the deformation is distributed throughout the lattice structure were investigated. The finite Element Analysis and Digital Image Processing (DIP) method was used to determine how the lattices deform. The results obtained will be useful for designing new metallic lattice structures with more excellent deformation resistance in future studies.

Downloads

Download data is not yet available.

References

Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., & Brandt, M. (2019). SLM lattice structures: Properties, performance, applications and challenges. Materials & Design, 183, 108137.

Gümrük, R., Maden, RAW ve Karadeniz, S. (2013). Paslanmaz çelik mikro kafes yapıların farklı yükleme koşulları altında statik mekanik davranışları. Malzeme Bilimi ve Mühendisliği: A , 586 , 392-406.

Jacobsen, A. J., Barvosa-Carter, W., & Nutt, S. (2008). Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides. Acta Materialia, 56(11), 2540-2548.

Doyoyo, M. ve Hu, JW (2006). Kısa ve ince dikmelerden oluşan metalik dikme-kafes malzemelerinin çok eksenli arızası. Uluslararası katılar ve yapılar dergisi, 43 (20), 6115- 6139.

Nayfeh, AH ve Hefzy, MS (1978). Üç boyutlu kafes benzeri uzay yapılarının sürekli modellemesi. Aiaa dergisi, 16 (8), 779-787.

Wang, C., Huang, W., Zhou, Y., He, L., He, Z., Chen, Z., ... & Wang, M. (2020). 3D printing of bone tissue engineering scaffolds. Bioactive materials, 5(1), 82-91.

Mehboob, H., Tarlochan, F., Mehboob, A., & Chang, SH (2018). Çimentosuz biyomimetik gözenekli kalça sapının tasarımı için 3B hücresel mikro yapıların sonlu eleman modellemesi ve karakterizasyonu. Malzemeler ve Tasarım, 149, 101-112.

ASL, H. G., YILMAZ, S., & Ertuğrul, SARI. Gözenekli Yapıya Sahip Kalça Protezi Tasarımı ve Uyluk Kemiği Üzerinde Sonlu Elemanlar Analizi. Erzincan University Journal of Science and Technology, 12(1), 95-105.

Soro, N., Brassart, L., Chen, Y., Veidt, M., Attar, H., & Dargusch, M. S. (2018). Finite element analysis of porous commercially pure titanium for biomedical implant application. Materials Science and Engineering: A, 725, 43-50.

Akbay, Ö. C., Bahce, E., & Ölmez, C. (2022). Investigation of Mechanical Behavior of Scaffolding Structures Produced Using CoCr Alloy by Selective Laser Melting Method. ICONTECH INTERNATIONAL JOURNAL, 6(2), 18-26.

J.C. Wallach, L.G. Gibson, Mechanical behavior of a three-dimensional truss material, Int.J. SolidsStrut.38(2001) 7181-7196.

Wang, L., Kang, J., Sun, C., Li, D., Cao, Y., & Jin, Z. (2017). Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants. Materials & Design, 133, 62-68.

Dumas, M., Terriault, P., & Brailovski, V. (2017). Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Materials & Design, 121, 383-392.

Quevedo González, F. J., & Nuño, N. (2016). Finite element modelling approaches for well-ordered porous metallic materials for orthopaedic applications: cost effectiveness and geometrical considerations. Computer methods in BiomeChaniCs and BiomediCal engineering, 19(8), 845-854.

Merkt, S., Hinke, C., Bültmann, J., Brandt, M., & Xie, YM (2015). Selektif lazer ergitme ile üretilen TiAl6V4 kafes yapılarının yarı statik ve dinamik basma testlerinde mekanik tepkisi. Lazer uygulamaları günlüğü, 27 (S1), S17006.

Goodall, R., Hernandez-Nava, E., Jenkins, SN, Sinclair, L., Tyrwhitt-Jones, E., Khodadadi, MA, ... & Ghadbeigi, H. (2019). Ti6Al4V kafeslerin mekanik davranışındaki kusur ve hasarın etkileri. Malzemelerdeki Sınırlar, 6, 117.

Luxner, M. H., Stampfl, J., & Pettermann, H. E. (2007). Numerical simulations of 3D open cell structures–influence of structural irregularities on elasto-plasticity and deformation localization. International Journal of Solids and Structures, 44(9), 2990- 3003.

Karamooz Ravari, M. R., & Kadkhodaei, M. (2015). A computationally efficient modeling approach for predicting mechanical behavior of cellular lattice structures. Journal of Materials Engineering and Performance, 24(1), 245-252.

Ni, Z., Wang, Z., Sun, L., Li, B., & Zhao, Y. (2014). Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities. Materials Science and Engineering: C, 41, 249-254.

Smith, M., Guan, Z., & Cantwell, W. J. (2013). Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. International Journal of Mechanical Sciences, 67, 28-41.

www.smenec.org 10 © SME

Guo, X. E., & Gibson, L. J. (1999). Behavior of intact and damaged honeycombs: a finite element study. International Journal of Mechanical Sciences, 41(1), 85-105.

Luxner, M. H., Stampfl, J., & Pettermann, H. E. (2005). Finite element modeling concepts and linear analyses of 3D regular open cell structures. Journal of Materials science, 40(22), 5859-5866.

Yu, T., Hyer, H., Sohn, Y., Bai, Y., & Wu, D. (2019). Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Materials & Design, 182, 108062.

Hao, L., Raymont, D., Yan, C., Hussein, A., & Young, P. (2011, September). Design and additive manufacturing of cellular lattice structures. In The International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP). Taylor & Francis Group, Leiria (pp. 249-254).

Weißmann, V., Bader, R., Hansmann, H., & Laufer, N. (2016). Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds. Materials & Design, 95, 188-197.

Isaenkova, M. G., Yudin, A. V., Rubanov, A. E., Osintsev, A. V., & Degadnikova, L. A. (2020). Deformation behavior modelling of lattice structures manufactured by a selective laser melting of 316L steel powder. Journal of Materials Research and Technology, 9(6), 15177-15184.

Downloads

Published

2023-03-01

Issue

Section

Articles

How to Cite

[1]
“Deformation Behaviors Investigation of CoCr Alloy Lattice Structures under Compression Test”, JME, vol. 18, no. 1, pp. 001–010, Mar. 2023, doi: 10.37255/jme.v18i1pp001-010.

Similar Articles

1-10 of 175

You may also start an advanced similarity search for this article.