Performance of ANN in Predicting the Tensile and Shear Strength of Al-Steel Explosive Clads
DOI:
https://doi.org/10.37255/jme.v18i1pp026-029Keywords:
Explosive cladding, Artificial Neural Network, Mechanical StrengthAbstract
In this study, an artificial neural network (ANN) model is created to predict aluminium-stainless steel explosive clads' tensile and shear strengths. The parameters for the explosive cladding process, such as the loading ratio (mass ratio of the explosive and the flyer, 0.6-1.0), standoff distance (5-9 mm), preset angle (0°-10°), and groove in the base plate (V/Dovetail), were altered. The ANN algorithm was trained in Python using the tensile and shear strengths gathered from 80% of the experiments (60), trials, and prior results. The constructed model was evaluated utilizing the remaining experimental results. The ANN model successfully predicts the tensile and shear strengths with an accuracy of less than 10% deviation from the experimental result.
Downloads
References
Kumar, C., Saravanan, S. and Raghukandan, K., 2022. Numerical and experimental investigation on aluminum 6061-V-grooved stainless steel 304 explosive cladding. Defence Technology, 18(2).249-260. https://doi.org/10.1016/j.dt.2020.11.010
Cheepu, M. and Susila, P., 2020. Growth rate of intermetallics in aluminum to copper dissimilar welding. Transactions of the Indian Institute of Metals, 73(6), pp.1509-1514. https://doi.org/10.1007/s12666-020-01905-z
Mróz, S., Stradomski, G., Dyja, H. and Galka, A., 2015. Using the explosive cladding method for production of Mg-Al bimetallic bars. Archives of Civil and Mechanical Engineering, 15(2), pp.317-323. https://doi.org/10.1016/j.acme.2014.12.003
Saravanan, S. and Raghukandan, K., 2022. Microstructure, strength and welding window of aluminum alloy− stainless steel explosive cladding with different interlayers. Transactions of Nonferrous Metals Society of China, 32(1), pp.91-103. https://doi.org/10.1016/S1003-6326(21)65780-1
Saravanan, S. and Murugan, G., 2019. Explosive Cladding of Aluminium 5052-Stainless Steel 304. Journal of Manufacturing Engineering, 14(3), pp.117-119. https://smenec.org/index.php/1/article/view/49
Song, J., Kostka, A., Veehmayer, M. and Raabe, D., 2011. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Materials Science and Engineering: A, 528(6), pp.2641-2647. https://doi.org/10.1016/j.msea.2010.11.092
Fang, Z., Shi, C., Sun, Z., Feng, K., Gao, L. and Shi, H., 2019. Influence of interlayer technique on microstructure and mechanical properties of Ti/Al cladding plate manufactured via explosive welding. Materials Research Express, 6(10), p.1065f9. DOI10.1088/2053-1591/ab42ac
Tamilchelvan, P., Raghukandan, K. and Saravanan, S., 2013. Optimization of process parameters in explosive cladding of titanium/stainless steel 304L plates. International Journal of Materials Research, 104(12), pp.1205-1211. https://doi.org/10.3139/146.110977
Robin, L.G., Raghukandan, K. and Saravanan, S., 2021. Process parameter optimization to achieve higher impact strength in SS316 wire-mesh and SiCp reinforced aluminum composite laminates produced by explosive cladding. Metals and Materials International, 27(9), pp.3493-3507. https://doi.org/10.1007/s12540-020-00641-9
Sivagurumanikandan, N., Saravanan, S., Kumar, G.S., Raju, S. and Raghukandan, K., 2018. Prediction and optimization of process parameters to enhance the tensile strength of Nd: YAG laser welded super duplex stainless steel. Optik, 157, pp.833-840. https://doi.org/10.1016/j.ijleo.2017.11.146
Wilson Dhileep Kumar, C., Saravanan, S. and Raghukandan, K., 2019. Influence of Grooved Base Plate on Microstructure and Mechanical Strength of Aluminum–Stainless Steel Explosive Cladding. Transactions of the Indian Institute of Metals, 72(12), pp.3269-3276. https://doi.org/10.1007/s12666-019-01795-w
Saravanan, S. and Gajalakshmi, K., 2022. Soft computing approaches for comparative prediction of ram tensile and shear strength in aluminium–stainless steel explosive cladding. Archives of Civil and Mechanical Engineering, 22(1), pp.1-16. https://doi.org/10.1007/s43452-021-00367-4
Yadav, R.K., 2020. PSO-GA based hybrid with Adam Optimization for ANN training with application in Medical Diagnosis. Cognitive Systems Research, 64, pp.191-199. https://doi.org/10.1016/j.cogsys.2020.08.011
Boob, D., Dey, S.S. and Lan, G., 2022. Complexity of training relu neural network. Discrete Optimization, 44, p.100620.https://doi.org/10.1016/j.disopt.2020.100620
Chai, T. and Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)-Arguments against avoiding RMSE in the literature. Geoscientific Model Development Discussions, 7(1), pp.1525-1534. https://doi.org/10.5194/gmd-7-1247-2014
Kumar, P., Ghosh, S.K., Saravanan, S. and Barma, J.D., 2022. Effect of Explosive Loading Ratio on Microstructure and Mechanical Properties of Al 5052/AZ31B Explosive Weld Composite. JOM, pp.1-9. https://doi.org/10.1007/s11837-022-05579-4
Chandriah, K.K. and Naraganahalli, R.V., 2021. RNN/LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting. Multimedia Tools and Applications, 80(17), pp.26145-26159. https://doi.org/10.1007/s11042-021-10913-0
Awais, M., Li, W., Hussain, S., Cheema, M.J.M., Li, W., Song, R. and Liu, C., 2022. Comparative evaluation of land surface temperature images from unmanned aerial vehicle and satellite observation for agricultural areas using in situ data. Agriculture, 12(2), p.184. https://doi.org/10.3390/agriculture12020184