Impact of Metal-Work Function and temperature on the performance of Schottky Barrier diode devices
DOI:
https://doi.org/10.37255/jme.v20i3pp113-121Keywords:
Metal-Work Functions, Schottky diode, Barrier height, Electrical behavior, Ideality factor, Metal-semiconductor contacts, thermionic emission.Abstract
N-Aluminum Gallium Arsenide Schottky Diodes are studied by I-V characteristics. Current-voltage characteristics were analyzed for some metal work Functions at a 300K temperature. A significant dependence was observed between this parameter and the electrical parameters. These results demonstrate that it affects the device's performance. Important electrical characteristics, like saturation current (IS), series resistances (RS ), ideality factor (n), and barrier height (bn ), are also defined for various temperature values by analyzing the current-voltage (I-V) behavior. R, b, and n parameters are computed using the Cheung method and the thermionic emission (TE) theory. The ideality factor (n) values were found to drop as temperatures increased, but the barrier height (bn) increased. The ideality factor values at the contact interface were found to exhibit a double Gaussian distribution based on temperature-dependent observations. Comparing the results to the experimental data revealed an equal result. These findings suggest that the n-AlGaAs structure may be effectively utilized in optoelectronic and photovoltaic applications, demonstrating excellent diode properties for solar cells. As a result, the outcomes of this recent research logically support the idea that these Schottky barrier diodes are ideal for effectively harvesting renewable energy.
Downloads
References
1. L. Łukasiak, and A. Jakubowski, History of Semiconductors, "Journal of Telecommunications and Information Technology", vol. 1, pp. 3–9, 2010.
2. N. Mesai, I. Lemkadem, and A. Benaouda, “Étude de l’effet de température sur la diode Schottky,” 2020.
3. N. K. R. Nallabala, S. V. Prabhakar, V. Verma, R. Singh, S. Alhammdi, V. Krishaiah, K. Manjunath, V. M. Dhanalakshmi, and V. R. Minnam Reddy, “Highly sensitive and cost-effective metal-semiconductor-metal asymmetric type Schottky metallization based ultraviolet photodetecting sensors fabricated on n-type GaN,” *Materials Science in Semiconductor Processing*, vol. 138, 106297, 2022.
4. M. Ulusoy, Y. Badali, G. Pirgholi-Givi, Y. Azizian-Kalandaragh, and S. Altındal, “The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface,” *Synthetic Metals*, vol. 292, 117243, 2023.
5. Kocyigit, M. Yilmaz, S. Aydogan, Ü. İncekara, and H. Kacus, “Comparison of n- and p-type Si-based Schottky photodiodes with interlayered Congo red dye,” *Materials Science in Semiconductor Processing*, vol. 135, 106045, 2021.
6. N. Sghaier, S. Bouzgarrou, M. M. Ben Salem, A. Souifi, A. Kalboussi, and G. Guillot, “I–V anomalies on InAlAs/InGaAs/InP HFETs and deep levels investigations,” *Materials Science and Engineering B*, vol. 121, pp. 178–182, 2005.
7. S. Bouzgarrou, M. M. Ben Salem, F. Hassen, A. Kalboussi, and A. Souifi, “DLTS and PL study of defects in InAlAs/InP heterojunctions grown by metal organic chemical vapor deposition,” *Materials Science and Engineering B*, vol. 116, pp. 202–207, 2005.
8. M. M. Ben Salem, S. Bouzgarrou, N. Sghaier, A. Kalboussi, and A. Souifi, “Correlation between static characteristics and deep levels in InAlAs/InGaAs/InP HEMTs,” *Materials Science and Engineering B*, vol. 127, no. 1, pp. 34–40, 2006.
9. S. Bouzgarrou, N. Sghaier, M. M. Ben Salem, A. Souifi, and A. Kalboussi, “Influence of interface states and deep levels on output characteristics of InAlAs/InGaAs/InP HEMTs,” *Materials Science and Engineering C*, vol. 28, pp. 676–679, 2008.
10. S. Bouzgarrou, M. M. Ben Salem, A. Kalboussi, and A. Souifi, “Experimental and theoretical study of parasitic effects in InAlAs/InGaAs/InP HEMTs,” *American Journal of Physics and Applications*, vol. 1, no. 1, pp. 18–24, 2013, doi: 10.11648/j.ajpa.20130101.14.
11. Türüt, “On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts,” *Turkish Journal of Physics*, vol. 44, pp. 302–347, 2020.
12. F. Acar, A. Buyukbas-Ulusan, and A. Tataroglu, “Analysis of interface states in Au/ZnO/p-InP (MOS) structure,” pp. 1–8, 2018.
13. Sadoun and I. Kemerchou, “Extraction of the electrical parameters of the Au/InSb/InP Schottky diode in the temperature range (300 K–425 K),” *International Journal of Energetica (IJECA)*, vol. 5, no. 1, pp. 2543–3717, 2020.
14. S. Demirezen, A. Arslan Alsac, H. G. Çetinkaya, and S. Altındal, “The investigation of current-transport mechanisms (CTMs) in the Al/(In2S3:PVA)/p-Si (MPS)-type Schottky barrier diodes (SBDs) at low and intermediate temperatures,” *Journal of Materials Science: Materials in Electronics*, vol. 34, p. 1186, 2023.
15. Buyukbas-Ulusan, A. Tataroglu, and S. Altındal-Yerişkin, “Analysis of the current transport characteristics in Au/n-Si Schottky diodes with Al2O3 interfacial layer over wide temperature range,” *ECS Journal of Solid-State Science and Technology*.
16. N. A. Al-Ahmadi, “Metal oxide semiconductor-based Schottky diodes: A review of recent advances,” *Materials Research Express*, vol. 7, 032001, 2020.
17. D. Caughey and R. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” *Proceedings of the IEEE*, vol. 55, pp. 2192–2193, 1967.
18. S. Selberherr, “Process and device modeling for VLSI,” *Microelectronics Reliability*, vol. 24, pp. 225–257, 1984.
19. S. Selberherr, *Analysis and Simulation of Semiconductor Devices*. Springer Science & Business Media, 2012.
20. W. Shockley and W. T. Read Jr., “Statistics of the recombinations of holes and electrons,” *Physical Review*, vol. 87, pp. 835–842, 1952.
21. M. Stössel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker, “Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting devices,” *Applied Physics A*, vol. 68, pp. 387–390, 1999.
22. Ghods, “Design and fabrication of field-effect III–V Schottky junction solar cells,” 2020.
23. H. Helal, Z. Benamara, M. Ben Arbia, A. Rabehi, A. C. Chaouche, and H. Maaref, “Electrical behavior of n-GaAs based Schottky diode for different contacts: Temperature dependence of current voltage,” *International Journal of Numerical Modelling*, vol. 34, e2916, 2021.
24. H. Helal, Z. Benamara, A. H. Kacha, M. Amrani, A. Rabehi, B. Akkal, G. Monier, and C. Robert-Goumet, “Comparative study of ionic bombardment and heat treatment on the electrical behavior of Au/GaN/n-GaAs Schottky diodes,” *Superlattices and Microstructures*, vol. 135, 106276, 2019.
25. H. Altan, M. Özer, and H. Ezgin, “Investigation of electrical parameters of Au/P3HT:PCBM/n-6H–SiC/Ag Schottky barrier diode with different current conduction models,” *Superlattices and Microstructures*, vol. 146, 106658, 2020.
26. Kumar, A. Kumar, K. K. Sharma, and S. Chand, “Analysis of anomalous transport mechanism across the interface of Ag/p-Si Schottky diode in wide temperature range,” *Superlattices and Microstructures*, vol. 128, pp. 373–381, 2019.
27. D. K. Schroder, *Semiconductor Material and Device Characterization*, 2006.
28. Barkhordari, S. Ozçelik, G. Pirgholi-Givi, H. R. Mashayekhi, S. Altındal, and Y. Azizian-Kalandaragh, “Dielectric properties of PVP:BaTiO3 interlayer in the Al/PVP:BaTiO3/p-Si structure,” *Silicon*, vol. 14, no. 10, pp. 5437–5443, 2022.
29. P. R. S. Reddy, V. Janardhanam, K.-H. Shim, V. R. Reddy, S. N. Lee, S.-J. Park, and C.-J. Choi, *Vacuum*, vol. 171, 109012, 2020.
30. Barkhordari, H. R. Mashayekhi, P. Amiri, S. Altındal, and Y. Azizian-Kalandaragh, “Optoelectric response of Schottky photodiode with a PVP:ZnTiO3 nanocomposite as an interfacial layer,” *Optical Materials*, vol. 148, 114787, 2024.
31. M. Nawar, M. Abd-Elsalam, A. M. El-Mahalawy, and M. M. El-Nahass, “Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction,” *Applied Physics A*, vol. 126, 113, 2020.
32. O. Çiçek, H. U. Tecimer, S. O. Tan, H. Tecimer, S. Altındal, and I. Uslu, “Evaluation of electrical and photovoltaic behaviors of Au/n-GaAs diodes with and without pure and graphene-doped PVA interfacial layers under dark and illuminated conditions,” *Composites Part B*, vol. 98, pp. 260–268, 2016.
33. S. M. Sze, *Physics of Semiconductor Devices*, 2nd ed., Wiley, New York, 1981.
34. Q. Zhou, H. Wu, and H. Li, “Barrier inhomogeneity of Schottky diode on nonpolar AlN grown by physical vapor transport,” *IEEE Journal of the Electron Devices Society*, vol. 7, pp. 662–667, 2019.
35. H. Elamen, Y. Badali, M. Ulusoy, Y. Azizian-Kalandaragh, S. Altındal, and M. T. Güneşer, “The photoresponse behavior of a Schottky structure with a transition metal oxide-doped organic polymer (RuO2:PVC) interface,” *Polymer Bulletin*, vol. 81, pp. 403–422, 2024.
36. S. Altındal, O. A. Faruk, S. Özdemir, A. Aydogan, and A. Türüt, “Discrepancies in barrier heights obtained from current–voltage and capacitance–voltage of Au/PNoMPhPPy/n-GaAs structures in wide range of temperature,” *Journal of Materials Science: Materials in Electronics*, vol. 33, pp. 12210–12223, 2022.
37. Y. Badali, H. Altan, and S. Altındal, “Thermal dependence on electrical characteristics of Au/(PVC:Sm2O3)/n-Si structure,” *Journal of Materials Science: Materials in Electronics*, vol. 35, p. 228, 2024.
38. R. Deniz, A. I. Tas, Z. Çaldıran, Ü. Incekara, M. Biber, S. Aydogan, and A. Türüt, “Effects of PEDOT:PSS and crystal violet interface layers on current-voltage performance of Schottky barrier diodes as a function of temperature and variation of diode capacitance with frequency,” *Current Applied Physics*, vol. 39, pp. 173–182, 2022.
39. R. Deniz, “The temperature dependence of current–voltage characteristics of V2O5/p-Si heterojunction diode,” *Journal of Materials Science: Materials in Electronics*, vol. 32, pp. 18886–18899, 2021.
40. İ. Taşçıoğlu, G. Pirgholi-Givi, S. Altındal Yerişkin, and Y. Azizian-Kalandaragh, “Examination on the current conduction mechanisms of Au/n-Si diodes with ZnO–PVP and ZnO/Ag2WO4–PVP interfacial layers,” *Journal of Sol-Gel Science and Technology*, vol. 107, pp. 536–547, 2023.
41. J. O. Bodunrin and S. J. Moloi, “Current-voltage characteristics of 4 MeV proton-irradiated silicon diodes at room temperature,” *Silicon*, vol. 14, pp. 10237–10244, 2022.
